Skip to content
Snippets Groups Projects

update

Merged Etienne Rifa requested to merge bars_update into master
2 files
+ 19
28
Compare changes
  • Side-by-side
  • Inline
Files
2
  • 68f24906
    bars_fun update · 68f24906
    Etienne Rifa authored
    replace Fact argument by sample_labels boolean, allow user to display sample ids rather than group they belong for non splitted plot.
    autoorder argument to apply or not automatic ordering of groups.
+ 16
25
@@ -64,10 +64,10 @@ aggregate_top_taxa <- function (x, top, level){
#' @param rank Taxonomy rank to merge features that have same taxonomy at a certain taxonomic rank (among rank_names(data), or 'ASV' for no glom)
#' @param top Number of top taxa to plot
#' @param Ord1 Variable used to order sample (X axis) or split the barplot if split = TRUE
#' @param sample_labels If true, x axis labels are sample IDS, if false labels displayed are levels from Ord1 argument. (FALSE)
#' @param sample_labels If true, x axis labels are sample IDS, if false labels displayed are levels from Ord1 argument. Ignored if split = TRUE (FALSE)
#' @param split if TRUE make a facet_wrap like grouped by Ord1 (default FALSE)
#' @param relative Plot relative (TRUE, default) or raw abundance plot (FALSE)
#' @param autoorder Order xaxis with gtools::mixedorder function (TRUE).
#' @param autoorder Automatic ordering xaxis labels based on Ord1 factor levels with gtools::mixedorder function (TRUE).
#' @param ylab Y axis title ("Abundance")
#' @param outfile Output html file.
#'
@@ -95,14 +95,11 @@ bars_fun <- function(data = data, rank = "Genus", top = 10, Ord1 = NULL, sample_
if( all(Ord1 != sample_variables(data))){
stop(paste("Wrong value in Ord1, please use variables existing in the phyloseq object:", toString(sample_variables(data))))
}
#{paste(sample_variables(data), collapse = ",")}
flog.info('Preprocess...')
Fdata = data
psobj.top <- aggregate_top_taxa(Fdata, rank, top = top)
# print("get data")
sdata <- as.data.frame(sample_data(psobj.top), stringsAsFactors = TRUE)
sdata$sample.id = sample_names(psobj.top)
otable = as.data.frame(otu_table(psobj.top))
@@ -112,9 +109,6 @@ if( all(Ord1 != sample_variables(data))){
dat <- as.data.frame(t(otable))
dat <- cbind.data.frame(sdata, dat)
# fun = glue( "dat <- dat[levels(sdata$sample.id), ]")
# eval(parse(text=fun))
flog.info(' Melting table...')
meltdat <- reshape2::melt(dat, id.vars=1:ncol(sdata))
tt <- levels(meltdat$variable)
@@ -123,25 +117,29 @@ if( all(Ord1 != sample_variables(data))){
LL=list()
# print(head(meltdat))
# print(levels(meltdat$sample.id))
save(list = ls(all.names = TRUE), file = "debug.rdata", envir = environment())
# save(list = ls(all.names = TRUE), file = "debug.rdata", envir = environment())
flog.info(' Ordering samples...')
if(autoorder){
flog.info(' Ordering samples...')
fun = glue( "labs = gtools::mixedorder(as.character(meltdat${Ord1}))" )
eval(parse(text=fun))
orderedIDS <- unique(meltdat$sample.id[gtools::mixedorder(as.character(meltdat[,Ord1]))])
orderedOrd1 <- meltdat[,Ord1][gtools::mixedorder(as.character(meltdat[,Ord1]))]
orderedOrd1 <- factor(orderedOrd1, levels = gtools::mixedsort(levels(orderedOrd1)))
}else{
labs = 1:nrow(meltdat)
orderedIDS <- unique(meltdat$sample.id)
orderedOrd1 <- meltdat[,Ord1]
}
# print(unique(meltdat$sample.id[labs]))
if(sample_labels){
lab1 = "sample.id"
}else{
lab1 = Ord1
}
print(lab1)
flog.info(' Set labels...')
xform <- list(categoryorder = 'array',
@@ -154,20 +152,16 @@ if( all(Ord1 != sample_variables(data))){
# subplot to vizualize groups
flog.info(' Some treatment 2...')
orderedIDS <- unique(meltdat$sample.id[gtools::mixedorder(as.character(meltdat[,Ord1]))])
orderedOrd1 <- meltdat[,Ord1][gtools::mixedorder(as.character(meltdat[,Ord1]))]
flog.info(' Subplot...')
df1 <- cbind.data.frame(x=sdata[orderedIDS, "sample.id"]@.Data[[1]],
g=sdata[orderedIDS, Ord1]@.Data[[1]],
y=1)
fun = glue( "df1$g <- factor(df1$g, levels = as.character(unique(orderedOrd1)))")
eval(parse(text=fun))
fun = glue( "meltdat${Ord1} <- factor(meltdat${Ord1}, levels = as.character(unique(orderedOrd1)))")
fun = glue( "meltdat${Ord1} <- factor(meltdat${Ord1}, levels = as.character(levels(orderedOrd1)))")
eval(parse(text=fun))
flog.info(' Plot 1 ...')
subp1 <- df1 %>% plot_ly(
type = 'bar',
x = ~x,
@@ -181,19 +175,16 @@ if( all(Ord1 != sample_variables(data))){
if(relative){
flog.info('Plotting relative...')
save(list = ls(all.names = TRUE), file = "debug.rdata", envir = environment())
#relative abondance
otable=apply(otable,2, function(x){Tot=sum(x); x/Tot})
dat= as.data.frame(t(otable))
dat <- cbind.data.frame(sdata, dat)
# fun = glue( "dat <- dat[levels(sdata$sample.id), ]")
# eval(parse(text=fun))
meltdat <- reshape2::melt(dat, id.vars=1:ncol(sdata))
tt <- levels(meltdat$variable)
meltdat$variable <- factor(meltdat$variable, levels= c("Other", tt[tt!="Other"]))
fun = glue( "meltdat${Ord1} <- factor(meltdat${Ord1}, levels = as.character(unique(orderedOrd1)))")
fun = glue( "meltdat${Ord1} <- factor(meltdat${Ord1}, levels = as.character(levels(orderedOrd1)))")
eval(parse(text=fun))
p1=plot_ly(meltdat, x = ~sample.id, y = ~value, type = 'bar', name = ~variable, color = ~variable) %>% #, color = ~variable
@@ -215,7 +206,7 @@ if( all(Ord1 != sample_variables(data))){
}
}
# facet_wrap output
# Splitted plot output
if(!split) {
if(!is.null(outfile)){
htmlwidgets::saveWidget(p1, outfile)
Loading