Skip to content
Snippets Groups Projects

update

Merged Etienne Rifa requested to merge bars_update into master
5 files
+ 65
4
Compare changes
  • Side-by-side
  • Inline
Files
5
+ 34
2
@@ -31,6 +31,32 @@ rarefaction <- function(data = data, col = NULL, step = 100, ggplotly = TRUE){
}
#' aggregate_top_taxa from microbiome package
#'
#'
#' @param x phyloseq object
#' @param top Keep the top-n taxa, and merge the rest under the category 'Other'. Instead of top-n numeric this can also be a character vector listing the groups to combine.
#' @param level Summarization level (from ‘rank_names(pseq)’)
#'
#' @importFrom microbiome aggregate_taxa
#' @importFrom microbiome top_taxa
#'
#' @export
aggregate_top_taxa <- function (x, top, level){
x <- aggregate_taxa(x, level)
tops <- top_taxa(x, top)
tax <- tax_table(x)
inds <- which(!rownames(tax) %in% tops)
tax[inds, level] <- "Other"
tax_table(x) <- tax
tt <- tax_table(x)[, level]
tax_table(x) <- tax_table(tt)
aggregate_taxa(x, level)
}
#' Barplots plotly
#'
#'
@@ -48,7 +74,6 @@ rarefaction <- function(data = data, col = NULL, step = 100, ggplotly = TRUE){
#' @return Returns barplots in an interactive plotly community plot
#'
#' @import plotly
#' @importFrom microbiome aggregate_top_taxa
#' @importFrom reshape2 melt
#' @importFrom gtools mixedsort
#' @importFrom dplyr group_map group_by across
@@ -75,6 +100,8 @@ if( all(Ord1 != sample_variables(data)) | all(Fact1 != sample_variables(data))){
Fdata = data
psobj.top <- aggregate_top_taxa(Fdata, rank, top = top)
# print("get data")
sdata <- as.data.frame(sample_data(psobj.top), stringsAsFactors = TRUE)
# sdata$sample.id = sample_names(psobj.top)
@@ -88,6 +115,7 @@ if( all(Ord1 != sample_variables(data)) | all(Fact1 != sample_variables(data))){
fun = glue( "dat <- dat[levels(sdata$sample.id), ]")
eval(parse(text=fun))
flog.info(' Melting table...')
meltdat <- reshape2::melt(dat, id.vars=1:ncol(sdata))
tt <- levels(meltdat$variable)
meltdat$variable <- factor(meltdat$variable, levels= c("Other", tt[tt!="Other"]))
@@ -98,6 +126,7 @@ if( all(Ord1 != sample_variables(data)) | all(Fact1 != sample_variables(data))){
# save(list = ls(all.names = TRUE), file = "debug.rdata", envir = environment())
flog.info(' Ordering samples...')
if(autoorder){
fun = glue( "labs = gtools::mixedorder(as.character(meltdat${Ord1}))" )
@@ -107,7 +136,8 @@ if( all(Ord1 != sample_variables(data)) | all(Fact1 != sample_variables(data))){
}
# print(unique(meltdat$sample.id[labs]))
save(list = ls(all.names = TRUE), file = "debug.rdata", envir = environment())
flog.info(' Some treatment 1...')
fun = glue( "xform <- list(categoryorder = 'array',
categoryarray = unique(meltdat$sample.id[labs]),
title = 'Samples',
@@ -120,6 +150,7 @@ if( all(Ord1 != sample_variables(data)) | all(Fact1 != sample_variables(data))){
# subplot to vizualize groups
flog.info(' Some treatment 2...')
orderedIDS <- unique(meltdat$sample.id[gtools::mixedorder(as.character(meltdat[,Ord1]))])
orderedOrd1 <- meltdat[,Ord1][gtools::mixedorder(as.character(meltdat[,Ord1]))]
@@ -132,6 +163,7 @@ if( all(Ord1 != sample_variables(data)) | all(Fact1 != sample_variables(data))){
fun = glue( "meltdat${Ord1} <- factor(meltdat${Ord1}, levels = as.character(unique(orderedOrd1)))")
eval(parse(text=fun))
flog.info(' Plot 1 ...')
subp1 <- df1 %>% plot_ly(
type = 'bar',
x = ~x,
Loading