Newer
Older
#!/usr/bin/env python3
import os
import random
import argparse
from collections import OrderedDict
import vcf
from Bio import SeqIO
parser = argparse.ArgumentParser(description='Generate simulated populations with SV')
parser.add_argument("--nb-inds", help="Number of individuals to generate", required=True, type=int)
parser.add_argument("--reference", help="Reference genome", required=True)
parser.add_argument("--sv-list", help="File containing the SVs", required=True)
parser.add_argument("--coverage", help="Coverage of reads (default: 15)", default=15, type=int)
parser.add_argument("--output-directory", help="Output directory (default: res)", default="res")
parser.add_argument("--tmp-directory", help="Temporary directory (default: tmp)", default="tmp")
parser.add_argument("--force-polymorphism", help="Force polymorphism for each SV", action='store_const', const=True,
default=False)
parser.add_argument("--haploid", help="Make a haploid genome, instead of diploid one", action="store_const", const=True,
default=False)
parser.add_argument("-l", "--read-len", help="Generate reads having a length of LEN", type=int, default=100)
parser.add_argument("-m", "--insert-len-mean", help="Generate inserts (fragments) having an average length of LEN",
type=int, default=300)
parser.add_argument("-v", "--insert-len-sd", help="Set the standard deviation of the insert (fragment) length (%%)",
args = parser.parse_args()
nb_inds = args.nb_inds
if nb_inds < 2:
raise Exception("nb-inds must be at least 2")
reference = args.reference
sv_list = args.sv_list
output_dir = args.output_directory
tmp_dir = args.tmp_directory
if not os.path.isfile(reference + ".fai"):
os.system("samtools faidx " + reference)
#############
# FUNCTIONS #
#############
def allele(frequency):
return 1 if random.uniform(0, 1) < frequency else 0
def get_genotypes_for_inds():
all_genotypes = []
genotypes_row = []
for i in range(1, nb_inds + 1):
if not haploid:
genotype = str(allele(freq)) + "/" + str(allele(freq))
else:
genotype = str(allele(freq))
genotype_data = vcf.model._Call(None, "INDIV_" + str(i), vcf.model.make_calldata_tuple("GT")(GT=genotype))
genotypes_row.append(genotype_data)
all_genotypes.append(genotype)
return all_genotypes, genotypes_row
def svsort(sv, chr):
"""
Function to sort regions
"""
return int(genotypes_for_inds[chr][sv]["start"])
prg_path = os.path.dirname(os.path.realpath(__file__))
if not os.path.isdir(tmp_dir):
os.mkdir(tmp_dir)
if not os.path.isdir(output_dir):
os.mkdir(output_dir)
###########################
# 1. Get random deletions #
###########################
print("GENERATE SV DELs...\n")
os.system(os.path.join(prg_path, "SVsim -W -i {0} -r {1} -o {2}{3}reference-sv".format(sv_list, reference, tmp_dir, os.path.sep)))
###################################
# 2. Build BED files of deletions #
###################################
with open(os.path.join(tmp_dir, "reference-sv.bed"), "w") as bed:
with open(os.path.join(tmp_dir, "reference-sv.bedpe"), "r") as bedpe:
for line in bedpe:
freq = 0.2 if random.uniform(0,1) < 0.5 else 0.5
parts = line.split("\t")
bed.write("\t".join([parts[0], parts[2], parts[4], parts[6].replace("::", "_"), str(freq)]) + "\n")
###############################################################################
# 3. Build VCF files containing genotypes for the given number of individuals #
###############################################################################
# VCF file is a result file, not used by this script
genotypes_for_inds = OrderedDict()
# { chr: { id_indiv: {start: #start, end: #end, genotypes: [[0,1],[1,1],...], ...}, # ...}
# Build VCF header:
with open(os.path.join(prg_path, "template.vcf"), "r") as template:
with open(os.path.join(tmp_dir, "template.vcf"), "w") as my_template:
for line in template:
if line[:6] == "#CHROM":
line = line.replace("\n", "")
line += "\tINDIV_" + str(i+1)
line += "\n"
my_template.write(line)
with open(os.path.join(tmp_dir, "reference-sv.bed"), "r") as bed:
vcf_reader = vcf.Reader(filename=os.path.join(tmp_dir, 'template.vcf'))
output_vcf = os.path.join(output_dir, "genotypes.vcf")
vcf_writer = vcf.Writer(open(output_vcf, "w"), vcf_reader)
for line in bed:
parts = line.replace("\n", "").split("\t")
freq = float(parts[4])
if parts[0] not in genotypes_for_inds:
genotypes_for_inds[parts[0]] = {}
genotypes_for_inds[parts[0]][parts[3]] = {"start": int(parts[1]), "end": int(parts[2]), "genotypes": []}
if args.force_polymorphism:
polymorph = False
while not polymorph:
all_genotypes, genotypes = get_genotypes_for_inds()
polymorph = len(set(all_genotypes)) > 1
else:
all_genotypes, genotypes = get_genotypes_for_inds()
genotypes_for_inds[parts[0]][parts[3]]["genotypes"] = [x.split("/") for x in all_genotypes]
info = {"END": int(parts[2]), "AF": freq}
vcf_record = vcf.model._Record(parts[0], int(parts[1]), parts[3], "N", [vcf.model._SV("DEL")], ".", ".", info, "GT", [0], genotypes)
vcf_writer.write_record(vcf_record)
vcf_writer.close()
# Bgzip + tabix:
os.system("bgzip -c " + output_vcf + " > " + output_vcf + ".gz")
os.unlink(output_vcf)
output_vcf += ".gz"
os.system("tabix -p vcf " + output_vcf)
###############################################
# Build fasta chromosomes for each individual #
###############################################
print("BUILD FASTA GENOME FOR EACH INDIVIDUAL...\n")
fasta_orig = SeqIO.index(reference, "fasta")
for chr, svs_infos in genotypes_for_inds.items():
print("PROCESSING CHROMOSOME {0}...\n".format(chr))
svs = list(svs_infos.keys())
svs = sorted(svs, key=lambda x:svsort(x, chr))
fasta_orig_chr = fasta_orig[chr]
last_nt = len(fasta_orig_chr)-1
# Compute keeped genomic regions for each diploid chromosome:
regions = OrderedDict()
current_region_pointer = OrderedDict()
for svs_i in svs:
i = 0
for genotypes in svs_infos[svs_i]["genotypes"]:
if i not in regions:
regions[i] = {}
current_region_pointer[i] = {}
for j in range(0, 2 if not haploid else 1): # For each chromosome of the diploid genome, or the chromosome
# of the haploid genome
if j not in regions[i]:
regions[i][j] = []
current_region_pointer[i][j] = "0"
if svs_infos[svs_i]["genotypes"][i][j] == "1":
regions[i][j].append([current_region_pointer[i][j], svs_infos[svs_i]["start"]])
current_region_pointer[i][j] = svs_infos[svs_i]["end"]
i += 1
# Build FASTA of each diploid/haploid chromosome:
for indiv, chrs_dips in regions.items():
id_chrs = list(chrs_dips.keys())
id_chrs = sorted(id_chrs)
for id_chr in id_chrs:
chr_dip = chrs_dips[id_chr] # SVs for each diploid chromosome
with open(os.path.join(output_dir, "INDIV_" + str(indiv+1) + "_chr_" + str(id_chr) + ".fasta"), "a") as output_handle:
fasta = ""
last_one = 0
for chr_region in chr_dip:
fasta += fasta_orig_chr[int(chr_region[0]):int(chr_region[1])]
logs_regions.append("\t".join(str(x) for x in chr_region))
last_one = int(chr_region[1])
if last_one < last_nt:
logs_regions.append("\t".join([str(current_region_pointer[indiv][id_chr]), str(last_nt)]))
fasta += fasta_orig_chr[int(current_region_pointer[indiv][id_chr]):last_nt]
SeqIO.write(fasta, output_handle, "fasta")
# Write logs
with open(os.path.join(output_dir, "INDIV_" + str(indiv+1) + ".regions.log"), "a") as log_handle:
log_handle.write(chr + "_" + str(id_chr) + "\t")
log_handle.write("\n\t".join(logs_regions))
log_handle.write("\n")
print("GENERATE RANDOM READS FOR EACH INDIVIDUAL FROM GENOME...\n")
# Generate reads for all individuals:
cmd = str("{4}pirs/pirs simulate -z -x {3} -d -B {4}pirs/Profiles/Base-Calling_Profiles/humNew.PE100.matrix.gz "
"-I {4}pirs/Profiles/InDel_Profiles/phixv2.InDel.matrix -l {5} -m {6} -v {7} "
"-G {4}pirs/Profiles/GC-depth_Profiles/humNew.gcdep_100.dat -o {0} {1} {2}")
cmd = str("{4}pirs/pirs simulate -z -x {3} -B {4}pirs/Profiles/Base-Calling_Profiles/humNew.PE100.matrix.gz "
"-I {4}pirs/Profiles/InDel_Profiles/phixv2.InDel.matrix -l {5} -m {6} -v {7} "
"-G {4}pirs/Profiles/GC-depth_Profiles/humNew.gcdep_100.dat -o {0} {1}")
prefix = os.path.join(output_dir, "INDIV_" + str(i))
chr0 = prefix + "_chr_0.fasta"
chr1 = prefix + "_chr_1.fasta"
os.system(cmd.format(prefix, chr0, chr1, args.coverage, prg_path + os.path.sep, args.read_len,
args.insert_len_mean, args.insert_len_sd))
os.system(cmd.format(prefix, chr0, "", args.coverage, prg_path + os.path.sep, args.read_len,
args.insert_len_mean, args.insert_len_sd))