Newer
Older
#! /usr/bin/env python3
"""mergeSV : merge SV on the basis of their intervals
The merging is done by identifiying connected components in a graph.
The graph is constructing taking the SV a node and an edge connects two nodes
if the conresponding intervals exhibits a reciprocal overlap of a least R0%.
Additional constraints on the precision of breakpoints (left and right) can be specified.
Each connected component is termed a CNVR (Copy Number Variation Region)
and is associated to the corresponding CNVs.
"""
import argparse
from pysam import VariantFile
prg_path = os.path.dirname(os.path.realpath(__file__))
sys.path.insert(0, os.path.join(prg_path, "lib"))
from svreader.vcfwrapper import VCFReader
from svinterval import construct_overlap_graph, connected_components
ALPHABET = list(string.ascii_uppercase)
XLSX_COLS = ALPHABET.copy()
COLOR_NOT_FOUND = "#FE2E2E"
COLOR_NOT_FOUND_2 = "#dddddd"
COLOR_COL_FILTER = "#BEF781"
COLOR_IS_KEPT = "#81F781"
COLOR_FALSE_POSITIVE = "#FE642E"
COLOR_WRONG_GT = "#B40404"
"""
Get arguments from argparse
:return: argparse arguments object
"""
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter, description="\
Build Results \n \
description: Build results of the simulated data detection")
parser.add_argument('-v', '--vcf', type=str, required=True, help='folder containing all vcf results files')
parser.add_argument('-t', '--true-vcf', type=str, required=True, help='VCF file containing the simulated deletions')
parser.add_argument('-f', '--filtered-vcf', type=str, required=False,
help='VCF file containing the filtered results', nargs='+')
parser.add_argument('-g', '--genotypes', type=str, help="VCF file containing genotypes", nargs='+')
parser.add_argument('--overlap_cutoff', type=float, default=0.5, help='cutoff for reciprocal overlap')
parser.add_argument('--left_precision', type=int, default=-1, help='left breakpoint precision')
parser.add_argument('--right_precision', type=int, default=-1, help='right breakpoint precision')
parser.add_argument('-o', '--output', type=str, default="results", help='output prefix')
parser.add_argument('--no-xls', action='store_const', const=True, default=False, help='Do not build Excel file')
parser.add_argument('--haploid', action='store_const', const=True, default=False, help='The organism is haploid')
# parse the arguments
args = parser.parse_args()
if args.left_precision == -1:
args.left_precision = sys.maxsize
if args.right_precision == -1:
args.right_precision = sys.maxsize
# send back the user input
return args
"""
Print to stderr
"""
print(*args, file=sys.stderr, **kwargs)
def passed_variant(record):
"""
Did this variant pass?
:param record: vcf record object
:return: True if pass, False else
"""
return record.filter is None or len(record.filter) == 0 or "PASS" in record.filter
"""
Read a vcf file
:param infile: vcf file path
:return: set or records, list of records ids
"""
SVSet=[]
ids = []
for record in VCFReader(infile):
if not passed_variant(record):
continue
SVSet.append(record)
ids.append(record.id)
return SVSet, ids
def svsort(sv, records):
"""
Function to sort regions
"""
if records[sv]["start"] != "":
start = str(records[sv]["start"])
else:
first_tool = list(records[sv]["tools"].keys())[0]
start = str(records[sv]["tools"][first_tool]["start"])
def get_gt(geno, true_gt):
"""
Get the genotype: consider 1/0 and 0/1 as equivalent (we can't identify a specific chromosome)
We want geno equal to true_gt in these cases
:param geno: the genotype
:param true_gt: the true genotype
:return: the genotype
"""
if true_gt is not None:
if geno == "1/0" and true_gt == "0/1":
geno = "0/1"
elif geno == "0/1" and true_gt == "1/0":
geno = "1/0"
return geno
def get_max_len(cell, col, max_col_len):
"""
Get the max content length of a column
:param cell: the cell content
:param col: the column number
:param max_col_len: current max content length for each column
:return: the new max content length for the given column
"""
return max(len(str(cell)), max_col_len[col] if col in max_col_len else 0)
def get_quality_color(quality):
"""
Returns the color associated to a genotype quality value
:param quality: the quality value
:return: the associated color
"""
color_very_low_quality = "#FE2E2E"
color_low_quality = "#FE9A2E"
color_medium_quality = "#FFFF00"
color_high_quality = "#81F781"
if quality > 60:
return color_high_quality
elif quality > 40:
return color_medium_quality
elif quality > 20:
return color_low_quality
else:
return color_very_low_quality
def get_genotypes(genotypes_files, true_vcf_file):
"""
Get genotype of each individual for each SV
:param genotypes_file: VCF file containing genotypes
:param true_vcf_file: VCF file containing real data
:return: genotypes of each individual for each SV, quality of each genotype, number of individuals
"""
reader_t = VariantFile(true_vcf_file)
samples_t = rec_t.samples
genotypes[rec_t.id] = ["/".join(map(str, samples_t[x]["GT"])) for x in samples_t]
nb_inds = len(list(genotypes.values())[0])
# Samples:
for genotypes_file in genotypes_files:
reader = VariantFile(genotypes_file)
for rec in reader:
samples = rec.samples
genotypes[rec.id] = ["/".join(map(str, samples[x]["GT"])) for x in samples_t.keys()] # Fixed: use samples keys
# from real data to keep the same order
gt_quality[rec.id] = [samples[x]["GQ"] for x in samples_t.keys()]
return genotypes, gt_quality, nb_inds
def build_records(genotypes, SVSet, true_ones_records, filtered_records, gt_quality):
"""
Build records for each SV
:param genotypes: list of genotypes of each individual for each SV
:param SVSet: set of all SVs
:param true_ones_records: records of the real data
:param filtered_records: records of the filtered data
:param gt_quality: list of qualities of each genotype of individuals for each SV
:return: records dict, tools set, list of orphans records (associated to None real data)
"""
number = 1
records = {}
tools = set()
orphans = 0
for components in connected_components(SVSet):
names = []
results = {}
true_one = None
for node in components:
names.append(node.id)
if node.id in true_ones_records:
true_one = node.id
records[true_one] = {
"start": node.start,
"end": node.end,
"length": int(node.end) - int(node.start),
"tools": {},
"genotypes": genotypes[true_one] if true_one in genotypes else None,
"chromosome": node.chrom
}
else:
tool_name = node.id.split("_")[0]
results[tool_name] = {
"start": node.start,
"end": node.end,
"length": int(node.end) - int(node.start),
"filtered": (node.id in filtered_records) if filtered_records is not None else False,
"genotypes": genotypes[node.id] if node.id in genotypes else None,
"qualities": gt_quality[node.id] if node.id in gt_quality else None
if true_one is not None:
records[true_one]["tools"] = results
else:
orphans += 1
records["orphan_" + str(orphans)] = {
"start": "",
"end": "",
"length": "",
"tools": results,
"genotypes": None,
"chromosome": chromosome
}
names.sort()
eprint("Group #%i: %s" % (number, ", ".join(names)))
number += 1
return records, tools, orphans
def build_header(tools, filtered_records, nb_records, max_col_len, nb_inds):
"""
Build tools headers, and header cells for each tool
:param tools: list of tools
:param cells: cells of the first sheet (sv description)
:param cells_gt: cells of the second sheet (genotype)
:param cells_gq: cells of the third sheet (genotype quality)
:param filtered_records: (bool) is there filtered records
:param nb_records: number of records
:param max_col_len: max content length for each column
:param nb_inds: number of individuals
:return: headers (list of tools + read and filtered data) ; cells, cells_gt, cells_gq and max_col_len updated
"""
# First one (SV description)
cells = {
"A1": {"text": "RESULTS", "format": {"bg_color": "#ffe856"}},
"A2": {"text": "Deletion", "format": {"bold": True}},
"A" + str(1 + nb_records + 3): {"text": "DIFFS", "format": {"bg_color": "#ffe856"}},
"A" + str(2 + nb_records + 3): {"text": "Deletion", "format": {"bold": True}}
}
# Second one (genotype)
cells_gt = {
"A1": {"text": "GENOTYPES", "format": {"bg_color": "#ffe856"}},
"A2": {"text": "Deletion", "format": {"bold": True}}
}
# Third one (genotype quality)
cells_gq = {
"A1": {"text": "GT QUALITY", "format": {"bg_color": "#ffe856"}},
"A2": {"text": "Deletion", "format": {"bold": True}}
}
for tool in ["Real data"] + tools + (["Filtered results"] if filtered_records else []):
headers.append(tool)
l_format = {"bold": True}
if tool == "Filtered results":
l_format["bg_color"] = COLOR_COL_FILTER
cells[XLSX_COLS[i] + "2"] = cells[XLSX_COLS[i] + str(2 + nb_records + 3)] = {"text": "Start",
"format": l_format}
max_col_len[i] = get_max_len("Start", i, max_col_len)
cells[XLSX_COLS[i + 1] + "2"] = cells[XLSX_COLS[i + 1] + str(2 + nb_records + 3)] = {"text": "End",
"format": l_format}
max_col_len[i + 1] = get_max_len("End", i + 1, max_col_len)
cells[XLSX_COLS[i + 2] + "2"] = cells[XLSX_COLS[i + 2] + str(2 + nb_records + 3)] = {"text": "Length",
"format": l_format}
max_col_len[i + 2] = get_max_len("Length", i + 2, max_col_len)
# Genotypes:
for k in range(0, nb_inds):
cells_gt[XLSX_COLS[j + k] + "2"] = cells_gq[XLSX_COLS[j + k] + "2"] = \
{"text": "indiv" + str(k + 1), "format": {"bold": True}}
i += 3
j += nb_inds
return headers, cells, cells_gt, cells_gq, max_col_len
def fill_real_data(row, cells, cells_gt, cells_gq, max_col_len, record, rec_id, nb_records, chromosome):
"""
Fill cells of the first data column (real data simulated)
:param cells: cells of the first sheet (sv description)
:param cells_gt: cells of the second sheet (genotype)
:param cells_gq: cells of the third sheet (genotype quality)
:param max_col_len: max text length for each column
:param record: data of the record
:param nb_records: number of records (total)
:return: cells, cells_gt, cells_gq and max_col_len updated
"""
# SV ID:
cells[XLSX_COLS[0] + str(row)] = cells[XLSX_COLS[0] + str(row + nb_records + 3)] = {"text": rec_id, "format": {}}
max_col_len[0] = get_max_len(rec_id, 0, max_col_len)
cells_gt[XLSX_COLS[0] + str(row)] = cells_gq[XLSX_COLS[0] + str(row)] = {"text": rec_id, "format": {}}
cells[XLSX_COLS[1] + str(row)] = cells[XLSX_COLS[1] + str(row + nb_records + 3)] = {"text": chromosome,
cells_gt[XLSX_COLS[1] + str(row)] = cells_gq[XLSX_COLS[1] + str(row)] = {"text": chromosome, "format": {}}
cells[XLSX_COLS[2] + str(row)] = cells[XLSX_COLS[2] + str(row + nb_records + 3)] = {"text": record["start"],
max_col_len[2] = get_max_len(record["start"], 2, max_col_len)
cells[XLSX_COLS[3] + str(row)] = cells[XLSX_COLS[3] + str(row + nb_records + 3)] = {"text": record["end"],
max_col_len[3] = get_max_len(record["end"], 3, max_col_len)
cells[XLSX_COLS[4] + str(row)] = cells[XLSX_COLS[4] + str(row + nb_records + 3)] = {"text": record["length"],
max_col_len[4] = get_max_len(record["length"], 4, max_col_len)
# GENOTYPES:
if record["genotypes"] is not None:
for gt in range(0, len(record["genotypes"])):
cells_gt[XLSX_COLS[2 + gt] + str(row)] = cells_gq[XLSX_COLS[2 + 0 + gt] + str(row)] = \
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
{"text": record["genotypes"][gt], "format": {}}
return cells, cells_gt, cells_gq, max_col_len
def fill_tool_data(row, col, cells, max_col_len, record, nb_records, my_start, my_end, my_length,
sv_format=None):
"""
Fill cells for a tool and a record
:param row: row position
:param col: columns position
:param cells: cells of the first sheet (sv description)
:param max_col_len: max text length for each column
:param record: data of the record for a tool
:param nb_records: number of records (total)
:param my_start: real start of the SV
:param my_end: real end of the SV
:param my_length: real length of the SV
:param sv_format: format for the cell
:return: cells and max_col_len updated
"""
if sv_format is None:
sv_format = {}
#############
# RAW DATA: #
#############
# START:
cells[XLSX_COLS[col] + str(row)] = {"text": record["start"], "format": sv_format}
max_col_len[col] = get_max_len(record["start"], col, max_col_len)
# END:
cells[XLSX_COLS[col + 1] + str(row)] = {"text": record["end"], "format": sv_format}
max_col_len[col + 1] = get_max_len(record["end"], col + 1, max_col_len)
# LENGTH:
cells[XLSX_COLS[col + 2] + str(row)] = {"text": record["length"], "format": sv_format}
max_col_len[col + 2] = get_max_len(record["length"], col + 2, max_col_len)
###########
# DIFFS: #
###########
if my_start != "":
start = record["start"] - my_start
end = record["end"] - my_end
length = record["length"] - my_length
else:
start = end = length = "NA"
# START:
cells[XLSX_COLS[col] + str(row + nb_records + 3)] = {"text": start, "format": sv_format}
cells[XLSX_COLS[col + 1] + str(row + nb_records + 3)] = {"text": end, "format": sv_format}
cells[XLSX_COLS[col + 2] + str(row + nb_records + 3)] = {"text": length,
"format": sv_format}
return cells, max_col_len
def fill_genotypes_data(row, col, cells_gt, cells_gq, record, my_genotypes, haploid=False):
"""
Fill cells for a tool and a record (genotype/genotype quality parts)
:param row: row position
:param col: column position
:param cells_gt: cells for genotype sheet (2)
:param cells_gq: cells for the genotype quality sheet (3)
:param record: data of the record for a tool
:param my_genotypes: real genotypes for each individual
:return: cells_gt and cells_gq updated
"""
the_genotypes = record["genotypes"]
for gt in range(0, len(the_genotypes)):
true_gt = my_genotypes[gt] if my_genotypes is not None else ""
geno = get_gt(the_genotypes[gt], true_gt)
# Format:
gt_format = {"bg_color": get_quality_color(int(record["qualities"][gt]))}
if (not haploid and geno != true_gt) or \
(haploid and ((true_gt == "1" and geno != "1/1") or (true_gt == "0" and geno != "0/0"))):
gt_format["font_color"] = "#ff0000"
# Genotype:
cells_gt[XLSX_COLS[col + gt] + str(row)] = {"text": geno, "format": gt_format}
cells_gq[XLSX_COLS[col + gt] + str(row)] = {"text": int(record["qualities"][gt]), "format": gt_format}
return cells_gt, cells_gq
def write_headers(workbook, worksheet, headers, cell_len, rows, filtered_records):
"""
Write header on the given sheet of the XLSX file
:param worksheet: th sheet
:param headers: headers values
:param cell_len: length of each cell of the header
:param rows: (list) rows into write the header
:param filtered_records: (bool) is there filtered records
"""
for row in rows:
merge_format = workbook.add_format({'bold': True})
worksheet.write(XLSX_COLS[1] + str(row + 1) + ":" + XLSX_COLS[cell_len] + str(row + 1), headers[0], merge_format)
for header in headers[1:]:
if i < len(headers) - 2 or not filtered_records:
merge_format = workbook.add_format({'align': 'center'})
else:
merge_format = workbook.add_format({'align': 'center', 'bg_color': COLOR_COL_FILTER})
worksheet.merge_range(XLSX_COLS[2 + i * cell_len] + str(row) + ":" + XLSX_COLS[1 + cell_len + i * cell_len] + str(row),
header, merge_format)
i += 1
def create_xls_document(output, genotypes, headers, filtered_records, nb_records, nb_inds, cells, cells_gt, cells_gq,
max_col_len):
"""
Create the XLSX file
:param output: output directory
:param genotypes: genotypes file
:param headers: headers of each sheet
:param filtered_records: (bool) has filtered records
:param nb_records: number of records
:param nb_inds: number of individuals
:param cells: cells for first sheet (SV description)
:param cells_gt: cells for second sheet (genotypes)
:param cells_gq: cells for third sheet (genotype quality)
:param max_col_len: max content length for each column
"""
try:
import xlsxwriter
except ImportError:
print("\nWARN: Excel file not built: xlsxwriter python module not installed")
#################################
# First sheet (SV description): #
#################################
worksheet = workbook.add_worksheet("SVs")
write_headers(workbook, worksheet, headers, 3, [1, 1+nb_records+3], filtered_records)
# Body:
for cell_id, cell_content in cells.items():
cell_format = workbook.add_format(cell_content["format"])
worksheet.write(cell_id, cell_content["text"], cell_format)
# Resize columns:
for col, max_len in max_col_len.items():
worksheet.set_column(col, col, max_len+1)
if genotypes:
#############################
# Second sheet (Genotypes): #
#############################
worksheet_gt = workbook.add_worksheet("Genotypes")
write_headers(workbook, worksheet_gt, headers, nb_inds, [1], filtered_records)
# Body:
for cell_id, cell_content in cells_gt.items():
cell_format = workbook.add_format(cell_content["format"])
worksheet_gt.write(cell_id, cell_content["text"], cell_format)
worksheet_gt.freeze_panes(0, 2+nb_inds)
# Resize columns:
worksheet_gt.set_column(0, 0, max_col_len[0]+1)
####################################
# Third sheet (Genotypes quality): #
####################################
worksheet_gq = workbook.add_worksheet("Gt quality")
write_headers(workbook, worksheet_gq, headers, nb_inds, [1], filtered_records)
# Body
for cell_id, cell_content in cells_gq.items():
cell_format = workbook.add_format(cell_content["format"])
worksheet_gq.write(cell_id, cell_content["text"], cell_format)
worksheet_gq.freeze_panes(0, 2+nb_inds)
# Resize columns:
worksheet_gq.set_column(0, 0, max_col_len[0]+1)
def create_tsv_file(filename: str, headers: list, cells: dict, nb_tools: int, nb_per_tool: int, records_range: ()):
"""
Create tabulated separated values file
:param filename: filename of the file
:param headers: headers of each sheet
:param cells: cells of the table to save
:param nb_tools: number of tools
:param nb_per_tool: number per tools
:param records_range: range of records to treat {tuple(2)}
:return:
"""
# Define top headers to each column:
for i in range(0, nb_per_tool):
top_headers[h] = header
head.append("")
h += 1
rows = [head]
for i in range(0, records_range[1]-records_range[0]):
rows.append(["" for x in range(0, (nb_tools * nb_per_tool) + 2)])
# Fill content:
for id_cell, cell in cells.items():
id_m = re.match(r"^([A-Z]+)(\d+)$", id_cell)
col = XLSX_COLS.index(id_m.group(1))
row = int(id_m.group(2))
if records_range[0] <= row <= records_range[1]:
r = row - records_range[0]
if r == 0 and col > 0:
if col > 1:
rows[r][col] = top_headers[col].replace(" ", "_") + "__" + cell["text"]
else:
rows[r][col] = headers[0]
else:
rows[r][col] = str(cell["text"])
# List as text:
for r in range(0, len(rows)):
rows[r] = "\t".join(rows[r])
tsv = "\n".join(rows)
with open(filename, "w") as tsv_file:
tsv_file.write(tsv)
def search_vcf_files(my_folder):
"""
Search vcf files recursively (can be replaced by glob, but required python >= 3.5
(3.4 version in genotoul plateform)
:param my_folder: folder into search files
:return: list of vcf files, with absolute paths
"""
vcf_files = []
for item in os.listdir(my_folder):
item_file = os.path.join(my_folder, item)
if os.path.isfile(item_file) and (item_file.endswith(".vcf") or item_file.endswith(".vcf.gz")):
vcf_files.append(os.path.abspath(item_file))
elif os.path.isdir(item_file):
vcf_files += search_vcf_files(item_file)
return vcf_files
def print_results(nb_records, orphans, with_xlsx, output, do_genotype):
"""
Print list of outputs
:param nb_records: number of records {int}
:param orphans: sv found in tools but not present in real data {dict}
:param with_xlsx: build xlsx file {bool}
:param output: output prefix {str}
:param do_genotype: do the genotype {bool}
"""
print("")
print("###########")
print("# RESULTS #")
print("###########")
print("")
print(str(nb_records) + " Results found")
print(str(orphans) + " False Positive")
print("")
if with_xlsx:
else:
print("Results:")
print("")
print("TSV files:")
print("\t- " + output + "_sv_per_tools.tsv")
print("\t- " + output + "_sv_diffs_per_tools.tsv")
print("\t- " + output + "_sv_genotypes_per_tools.tsv")
print("\t- " + output + "_sv_genotypes_quality_per_tools.tsv")
print("")
def fill_cells_no_tools(cells, cells_gt, cells_gq, i, j, g, nb_records, nb_inds, do_genotype):
"""
Fill cells when a tool does not detect a SV
:param cells: cells definition
:param cells_gt: cells definition for genotypes
:param cells_gq: cells definition for genotypes quality
:param i: row index
:param j: column index
:param g: column index for genotypes and genotypes quality tables
:param nb_records: total number of records
:param nb_inds: total number of individuals
:param do_genotype: do the genotypes
:return: cells, completed
"""
for k in range(0, 3):
# noinspection PyUnresolvedReferences
cells[XLSX_COLS[j + k] + str(i)] = {"text": "", "format": {"bg_color": COLOR_NOT_FOUND}}
cells[XLSX_COLS[j + k] + str(i + nb_records + 3)] = {"text": "",
"format": {"bg_color": COLOR_NOT_FOUND}}
# Genotype:
for gt in range(0, nb_inds):
# noinspection PyUnresolvedReferences
cells_gt[XLSX_COLS[g + gt] + str(i)] = cells_gq[XLSX_COLS[g + gt] + str(i)] = \
{"text": "", "format": {"bg_color": COLOR_NOT_FOUND_2}}
return cells, cells_gt, cells_gq
def apply_style_of_filter_cells(cells, cells_gt, cells_gq, i, is_kept, nb_records, nb_inds, nb_tools, filtered_records,
"""
Apply style of cells
:param cells: cells of the default table {dict}
:param cells_gt: cells of the genotypes table {dict}
:param cells_gq: cells of the genotypes quality table {dict}
:param i: row index {int}
:param is_kept: is the variant kept after filtering {bool}
:param nb_records: number of records {int}
:param nb_inds: number of individuals {int}
:param nb_tools: number of tools {int}
:param filtered_records: file containing filtered records {str}
:param do_genotype: do the genotype {bool}
:param rec_id: id of the record {str}
:return:
"""
if is_kept:
# SV is kept: color bg in green in the corresponding tool
cells[XLSX_COLS[0] + str(i)]["format"]["bg_color"] = \
cells[XLSX_COLS[0] + str(i + nb_records + 3)]["format"]["bg_color"] = COLOR_IS_KEPT
elif filtered_records is not None:
# SV does not pass the filter: color bg in red in the filter column
cells[XLSX_COLS[2 + ((nb_tools + 1) * 3)] + str(i)] = {"text": "", "format": {"bg_color": COLOR_NOT_FOUND}}
cells[XLSX_COLS[2 + ((nb_tools + 1) * 3) + 1] + str(i)] = {"text": "",
"format": {"bg_color": COLOR_NOT_FOUND}}
cells[XLSX_COLS[2 + ((nb_tools + 1) * 3) + 2] + str(i)] = {"text": "",
"format": {"bg_color": COLOR_NOT_FOUND}}
cells[XLSX_COLS[2 + ((nb_tools + 1) * 3)] + str(i + nb_records + 3)] = {"text": "",
"format": {
"bg_color": COLOR_NOT_FOUND}}
cells[XLSX_COLS[2 + ((nb_tools + 1) * 3) + 1] + str(i + nb_records + 3)] = {
"text": "", "format": {"bg_color": COLOR_NOT_FOUND}}
cells[XLSX_COLS[2 + ((nb_tools + 1) * 3) + 2] + str(i + nb_records + 3)] = {
"text": "", "format": {"bg_color": COLOR_NOT_FOUND}}
# Genotype:
# Color in gray in the filter column
for gt in range(0, nb_inds):
cells_gt[XLSX_COLS[2 + ((nb_tools + 1) * nb_inds) + gt] + str(i)] = \
cells_gq[XLSX_COLS[2 + ((nb_tools + 1) * nb_inds) + gt] + str(i)] = {"text": "", "format":
{"bg_color": COLOR_NOT_FOUND_2}
}
# False positives (orphans) in orange:
if re.match(r"^orphan_\d+$", rec_id):
cells[XLSX_COLS[0] + str(i)]["format"]["bg_color"] = \
cells[XLSX_COLS[0] + str(i + nb_records + 3)]["format"]["bg_color"] = COLOR_FALSE_POSITIVE
return cells, cells_gt, cells_gq
def build_body_cells(rec_keys, records, nb_records, nb_inds, tools, cells, cells_gt, cells_gq, max_col_len,
nb_tools, do_genotype, haploid, filtered_records):
for rec_id in rec_keys:
record = records[rec_id]
my_start = record["start"]
my_end = record["end"]
my_length = record["length"]
my_genotypes = record["genotypes"]
# Real data of the simulation:
cells, cells_gt, cells_gq, max_col_len = fill_real_data(i, cells, cells_gt, cells_gq, max_col_len, record,
rec_id, nb_records, record["chromosome"])
is_kept = False
for tool in tools:
if tool in record["tools"]:
###########################
# IF TOOL DETECTS THE SV: #
###########################
######################
# SET FILTERED DATA: #
######################
sv_format = {"bg_color": COLOR_IS_KEPT}
cells, max_col_len = fill_tool_data(i, 2 + ((nb_tools + 1) * 3), cells, max_col_len,
record["tools"][tool], nb_records, my_start, my_end, my_length,
{"bg_color": COLOR_COL_FILTER})
# Genotype (sheets 2&3):
cells_gt, cells_gq = fill_genotypes_data(i, 2 + ((nb_tools + 1) * nb_inds), cells_gt, cells_gq,
record["tools"][tool], my_genotypes, haploid)
#################
# SET TOOL DATA #
#################
# SV data (sheet 1):
cells, max_col_len = fill_tool_data(i, j, cells, max_col_len,
record["tools"][tool], nb_records, my_start, my_end, my_length,
sv_format)
# Genotype (sheets 2&3):
cells_gt, cells_gq = fill_genotypes_data(i, g, cells_gt, cells_gq,
record["tools"][tool], my_genotypes, haploid)
###############################
# TOOL DOES NOT DETECT THE SV #
###############################
cells, cells_gt, cells_gq = fill_cells_no_tools(cells, cells_gt, cells_gq, i, j, g, nb_records, nb_inds,
###############################################################################
# Until we have filled all tools, check if the record is kept after filtering: #
###############################################################################
cells, cells_gt, cells_gq = apply_style_of_filter_cells(cells, cells_gt, cells_gq, i, is_kept, nb_records,
nb_inds, nb_tools, filtered_records, do_genotype,
rec_id)
return cells, cells_gt, cells_gq, max_col_len
for alp in ALPHABET:
for j in ALPHABET:
XLSX_COLS.append(alp + j)
def init(output, vcf_folder, true_vcf, filtered_vcfs=None, genotypes_files=None, overlap_cutoff=0.5,
left_precision=sys.maxsize, right_precision=sys.maxsize, no_xls=False, haploid=False):
genotypes = {}
gt_quality = {}
nb_inds = 0
if genotypes_files:
genotypes, gt_quality, nb_inds = get_genotypes(genotypes_files, true_vcf)
do_genotype = genotypes_files is not None
filenames = search_vcf_files(vcf_folder)
true_ones = true_vcf
# Reading all the vcf files
sv_set = []
for infile in filenames:
eprint(" Reading file %s" % infile)
try:
sv_set += read_vcf_file(infile)[0]
except:
print("Ignoreing file %s" % infile)
eprint(" Reading file %s" % true_ones)
sv_set_to, true_ones_records = read_vcf_file(true_ones)
sv_set += sv_set_to
if filtered_vcfs:
for filtered_vcf in filtered_vcfs:
eprint(" Reading file %s" % filtered_vcf)
filtered_records += read_vcf_file(filtered_vcf)[1]
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
# Compute connected components:
eprint("Computing Connected components")
construct_overlap_graph(sv_set, overlap_cutoff, left_precision, right_precision)
# Build records:
records, tools, orphans = build_records(genotypes, sv_set, true_ones_records, filtered_records, gt_quality)
nb_records = len(records)
#################################################
# Define cells of each sheet of the excel file: #
#################################################
tools = sorted(tools)
nb_tools = len(tools)
max_col_len = {}
######################
# BUILD HEADER CELLS #
######################
headers, cells, cells_gt, cells_gq, max_col_len = build_header(tools, filtered_records is not None, nb_records,
max_col_len, nb_inds)
rec_keys = sorted(records.keys(), key=lambda x: (records[x]["chromosome"], svsort(x, records)))
####################
# BUILD BODY CELLS #
####################
cells, cells_gt, cells_gq, max_col_len = build_body_cells(rec_keys, records, nb_records, nb_inds, tools, cells,
cells_gt, cells_gq, max_col_len, nb_tools, do_genotype,
haploid, filtered_records)
if not no_xls:
with_xlsx = create_xls_document(output, genotypes, headers, filtered_records is not None, nb_records, nb_inds,
cells, cells_gt, cells_gq, max_col_len)
create_tsv_file(output + "_sv_per_tools.tsv", headers, cells,
nb_tools + (2 if filtered_records is not None else 1),
3, (2, nb_records + 2))
create_tsv_file(output + "_sv_diffs_per_tools.tsv", headers, cells,
nb_tools + (2 if filtered_records is not None else 1),
3, (2 + nb_records + 3, nb_records * 2 + 5))
create_tsv_file(output + "_sv_genotypes_per_tools.tsv", headers, cells_gt,
nb_tools + (2 if filtered_records is not None else 1),
nb_inds, (2, nb_records + 2))
create_tsv_file(output + "_sv_genotypes_quality_per_tools.tsv", headers, cells_gq,
nb_tools + (2 if filtered_records is not None else 1),
nb_inds, (2, nb_records + 2))
print_results(nb_records, orphans, with_xlsx, output, do_genotype)
def main():
"""
Main function
"""
# parse the command line args
args = get_args()
init(args.output, args.vcf, args.true_vcf, args.filtered_vcf, args.genotypes, args.overlap_cutoff,
args.left_precision, args.right_precision, args.no_xls, args.haploid)
# initialize the script
if __name__ == '__main__':