Skip to content
Snippets Groups Projects
Commit a3b3d157 authored by sanchezi's avatar sanchezi
Browse files

add CRAN suggestions - citation + ncores==2

parent 047427aa
Branches main
Tags v1.0.0
No related merge requests found
Pipeline #75041 passed
......@@ -17,7 +17,8 @@ Description: A method for detecting outliers with a Kalman filter on impulsed
are data points that differ significantly from other observations. 'ML'
(Maximization Likelihood) and 'EM' (Expectation-Maximization algorithm)
algorithms were implemented in 'kfino'. The method is described in full
details in the following arXiv e-Print: <arXiv:2208.00961>.
details in the following e-Print by Cloez B., Fontez B., González García E.
and Sanchez I. (2022) <arXiv:2208.00961>.
License: GPL-3
Depends: R (>= 4.1.0)
Encoding: UTF-8
......
......@@ -1512,7 +1512,7 @@ div.tocify {
<h1 class="title toc-ignore">How to perform a kfino outlier
detection</h1>
<h4 class="author">B. Cloez &amp; I. Sanchez</h4>
<h4 class="date">octobre 05, 2022</h4>
<h4 class="date">octobre 10, 2022</h4>
 
</div>
 
......@@ -75,8 +75,12 @@ simpleCall<-function(datain,Index,Tvar,Yvar,param){
return(tp.resu)
}
ncores<-parallel::detectCores()
myCluster<-parallel::makeCluster(ncores - 1)
# In a real example, take advantage of as many cores as you can
# ncores<-parallel::detectCores()
# myCluster<-parallel::makeCluster(ncores - 1)
# For CRAN requirements, we use here only 2 cores.
myCluster <- parallel::makeCluster(2)
doParallel::registerDoParallel(myCluster)
resu2<-foreach(i=seq_along(myIDE), .packages="kfino") %dopar%
......
......@@ -105,8 +105,12 @@ simpleCall<-function(datain,Index,Tvar,Yvar,param){
return(tp.resu)
}
ncores<-parallel::detectCores()
myCluster<-parallel::makeCluster(ncores - 1)
# In a real example, take advantage of as many cores as you can
# ncores<-parallel::detectCores()
# myCluster<-parallel::makeCluster(ncores - 1)
# For CRAN requirements, we use here only 2 cores.
myCluster <- parallel::makeCluster(2)
doParallel::registerDoParallel(myCluster)
resu2<-foreach(i=seq_along(myIDE), .packages="kfino") %dopar%
......
......@@ -1512,7 +1512,7 @@ div.tocify {
<h1 class="title toc-ignore">How to perform a kfino outlier detection on
multiple individuals</h1>
<h4 class="author">B. Cloez &amp; I. Sanchez</h4>
<h4 class="date">octobre 05, 2022</h4>
<h4 class="date">octobre 10, 2022</h4>
 
</div>
 
......@@ -1571,7 +1571,7 @@ for (i in seq_along(myIDE)){
#&gt; [1] &quot;250017033503096&quot;
#&gt; [1] 566 5
Sys.time() - t0
#&gt; Time difference of 18.57455 secs
#&gt; Time difference of 18.28121 secs
 
print(length(resu1))
#&gt; [1] 4</code></pre>
......@@ -1607,8 +1607,12 @@ simpleCall&lt;-function(datain,Index,Tvar,Yvar,param){
return(tp.resu)
}
 
ncores&lt;-parallel::detectCores()
myCluster&lt;-parallel::makeCluster(ncores - 1)
# In a real example, take advantage of as many cores as you can
# ncores&lt;-parallel::detectCores()
# myCluster&lt;-parallel::makeCluster(ncores - 1)
# For CRAN requirements, we use here only 2 cores.
myCluster &lt;- parallel::makeCluster(2)
doParallel::registerDoParallel(myCluster)
 
resu2&lt;-foreach(i=seq_along(myIDE), .packages=&quot;kfino&quot;) %dopar%
......@@ -1620,7 +1624,7 @@ resu2&lt;-foreach(i=seq_along(myIDE), .packages=&quot;kfino&quot;) %dopar%
 
parallel::stopCluster(myCluster)
Sys.time() - t0
#&gt; Time difference of 9.251507 secs
#&gt; Time difference of 12.13639 secs
 
print(length(resu2))
#&gt; [1] 4</code></pre>
......
......@@ -8,7 +8,7 @@
\description{
\if{html}{\figure{logo.png}{options: style='float: right' alt='logo' width='120'}}
A method for detecting outliers with a Kalman filter on impulsed noised outliers and prediction on cleaned data. 'kfino' is a robust sequential algorithm allowing to filter data with a large number of outliers. This algorithm is based on simple latent linear Gaussian processes as in the Kalman Filter method and is devoted to detect impulse-noised outliers. These are data points that differ significantly from other observations. 'ML' (Maximization Likelihood) and 'EM' (Expectation-Maximization algorithm) algorithms were implemented in 'kfino'. The method is described in full details in the following arXiv e-Print: \href{https://arxiv.org/abs/2208.00961}{arXiv:2208.00961}.
A method for detecting outliers with a Kalman filter on impulsed noised outliers and prediction on cleaned data. 'kfino' is a robust sequential algorithm allowing to filter data with a large number of outliers. This algorithm is based on simple latent linear Gaussian processes as in the Kalman Filter method and is devoted to detect impulse-noised outliers. These are data points that differ significantly from other observations. 'ML' (Maximization Likelihood) and 'EM' (Expectation-Maximization algorithm) algorithms were implemented in 'kfino'. The method is described in full details in the following e-Print by Cloez B., Fontez B., González García E. and Sanchez I. (2022) \href{https://arxiv.org/abs/2208.00961}{arXiv:2208.00961}.
}
\details{
xxxxxxxx xxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxx.
......
......@@ -105,8 +105,12 @@ simpleCall<-function(datain,Index,Tvar,Yvar,param){
return(tp.resu)
}
ncores<-parallel::detectCores()
myCluster<-parallel::makeCluster(ncores - 1)
# In a real example, take advantage of as many cores as you can
# ncores<-parallel::detectCores()
# myCluster<-parallel::makeCluster(ncores - 1)
# For CRAN requirements, we use here only 2 cores.
myCluster <- parallel::makeCluster(2)
doParallel::registerDoParallel(myCluster)
resu2<-foreach(i=seq_along(myIDE), .packages="kfino") %dopar%
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment