diff --git a/DESCRIPTION b/DESCRIPTION index 14a81b192e89d413338464093f1e0baa9f5586a0..d6ea44a9187a5d5434a178773173c686e2ba5e1e 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -17,7 +17,8 @@ Description: A method for detecting outliers with a Kalman filter on impulsed are data points that differ significantly from other observations. 'ML' (Maximization Likelihood) and 'EM' (Expectation-Maximization algorithm) algorithms were implemented in 'kfino'. The method is described in full - details in the following arXiv e-Print: <arXiv:2208.00961>. + details in the following e-Print by Cloez B., Fontez B., González GarcÃa E. + and Sanchez I. (2022) <arXiv:2208.00961>. License: GPL-3 Depends: R (>= 4.1.0) Encoding: UTF-8 diff --git a/doc/HowTo.html b/doc/HowTo.html index abadc56a93c54951f78474aaacdc9ef242bb2dd2..36ceeccb085188ef092bd7945dea1339fb165087 100644 --- a/doc/HowTo.html +++ b/doc/HowTo.html @@ -1512,7 +1512,7 @@ div.tocify { <h1 class="title toc-ignore">How to perform a kfino outlier detection</h1> <h4 class="author">B. Cloez & I. Sanchez</h4> -<h4 class="date">octobre 05, 2022</h4> +<h4 class="date">octobre 10, 2022</h4> </div> diff --git a/doc/multipleFit.R b/doc/multipleFit.R index abb6c6cb33f3453e47df3e919b904a5b050549a1..c40fd703da07b7450b5bf7c8b34c0295fb2c025c 100644 --- a/doc/multipleFit.R +++ b/doc/multipleFit.R @@ -75,8 +75,12 @@ simpleCall<-function(datain,Index,Tvar,Yvar,param){ return(tp.resu) } -ncores<-parallel::detectCores() -myCluster<-parallel::makeCluster(ncores - 1) +# In a real example, take advantage of as many cores as you can +# ncores<-parallel::detectCores() +# myCluster<-parallel::makeCluster(ncores - 1) + +# For CRAN requirements, we use here only 2 cores. +myCluster <- parallel::makeCluster(2) doParallel::registerDoParallel(myCluster) resu2<-foreach(i=seq_along(myIDE), .packages="kfino") %dopar% diff --git a/doc/multipleFit.Rmd b/doc/multipleFit.Rmd index a4f6f691a0b0dde9aac3b3dfebc200d03f0fc81b..102a4b54007eb3d5b7216b2d7782742776c89cc1 100644 --- a/doc/multipleFit.Rmd +++ b/doc/multipleFit.Rmd @@ -105,8 +105,12 @@ simpleCall<-function(datain,Index,Tvar,Yvar,param){ return(tp.resu) } -ncores<-parallel::detectCores() -myCluster<-parallel::makeCluster(ncores - 1) +# In a real example, take advantage of as many cores as you can +# ncores<-parallel::detectCores() +# myCluster<-parallel::makeCluster(ncores - 1) + +# For CRAN requirements, we use here only 2 cores. +myCluster <- parallel::makeCluster(2) doParallel::registerDoParallel(myCluster) resu2<-foreach(i=seq_along(myIDE), .packages="kfino") %dopar% diff --git a/doc/multipleFit.html b/doc/multipleFit.html index d145ce47c18df6cbae33ecaa3810d478b75e5815..6e8772e74c7dc6c94c863833be97f642c9f6065a 100644 --- a/doc/multipleFit.html +++ b/doc/multipleFit.html @@ -1512,7 +1512,7 @@ div.tocify { <h1 class="title toc-ignore">How to perform a kfino outlier detection on multiple individuals</h1> <h4 class="author">B. Cloez & I. Sanchez</h4> -<h4 class="date">octobre 05, 2022</h4> +<h4 class="date">octobre 10, 2022</h4> </div> @@ -1571,7 +1571,7 @@ for (i in seq_along(myIDE)){ #> [1] "250017033503096" #> [1] 566 5 Sys.time() - t0 -#> Time difference of 18.57455 secs +#> Time difference of 18.28121 secs print(length(resu1)) #> [1] 4</code></pre> @@ -1607,8 +1607,12 @@ simpleCall<-function(datain,Index,Tvar,Yvar,param){ return(tp.resu) } -ncores<-parallel::detectCores() -myCluster<-parallel::makeCluster(ncores - 1) +# In a real example, take advantage of as many cores as you can +# ncores<-parallel::detectCores() +# myCluster<-parallel::makeCluster(ncores - 1) + +# For CRAN requirements, we use here only 2 cores. +myCluster <- parallel::makeCluster(2) doParallel::registerDoParallel(myCluster) resu2<-foreach(i=seq_along(myIDE), .packages="kfino") %dopar% @@ -1620,7 +1624,7 @@ resu2<-foreach(i=seq_along(myIDE), .packages="kfino") %dopar% parallel::stopCluster(myCluster) Sys.time() - t0 -#> Time difference of 9.251507 secs +#> Time difference of 12.13639 secs print(length(resu2)) #> [1] 4</code></pre> diff --git a/man/kfino.Rd b/man/kfino.Rd index 86e5301ee8d547e00c6dde58730ef31d80df97d4..f5a26084baf40e1ce029b83fd89d28e9f42afef4 100644 --- a/man/kfino.Rd +++ b/man/kfino.Rd @@ -8,7 +8,7 @@ \description{ \if{html}{\figure{logo.png}{options: style='float: right' alt='logo' width='120'}} -A method for detecting outliers with a Kalman filter on impulsed noised outliers and prediction on cleaned data. 'kfino' is a robust sequential algorithm allowing to filter data with a large number of outliers. This algorithm is based on simple latent linear Gaussian processes as in the Kalman Filter method and is devoted to detect impulse-noised outliers. These are data points that differ significantly from other observations. 'ML' (Maximization Likelihood) and 'EM' (Expectation-Maximization algorithm) algorithms were implemented in 'kfino'. The method is described in full details in the following arXiv e-Print: \href{https://arxiv.org/abs/2208.00961}{arXiv:2208.00961}. +A method for detecting outliers with a Kalman filter on impulsed noised outliers and prediction on cleaned data. 'kfino' is a robust sequential algorithm allowing to filter data with a large number of outliers. This algorithm is based on simple latent linear Gaussian processes as in the Kalman Filter method and is devoted to detect impulse-noised outliers. These are data points that differ significantly from other observations. 'ML' (Maximization Likelihood) and 'EM' (Expectation-Maximization algorithm) algorithms were implemented in 'kfino'. The method is described in full details in the following e-Print by Cloez B., Fontez B., González GarcÃa E. and Sanchez I. (2022) \href{https://arxiv.org/abs/2208.00961}{arXiv:2208.00961}. } \details{ xxxxxxxx xxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxx. diff --git a/vignettes/multipleFit.Rmd b/vignettes/multipleFit.Rmd index a4f6f691a0b0dde9aac3b3dfebc200d03f0fc81b..102a4b54007eb3d5b7216b2d7782742776c89cc1 100644 --- a/vignettes/multipleFit.Rmd +++ b/vignettes/multipleFit.Rmd @@ -105,8 +105,12 @@ simpleCall<-function(datain,Index,Tvar,Yvar,param){ return(tp.resu) } -ncores<-parallel::detectCores() -myCluster<-parallel::makeCluster(ncores - 1) +# In a real example, take advantage of as many cores as you can +# ncores<-parallel::detectCores() +# myCluster<-parallel::makeCluster(ncores - 1) + +# For CRAN requirements, we use here only 2 cores. +myCluster <- parallel::makeCluster(2) doParallel::registerDoParallel(myCluster) resu2<-foreach(i=seq_along(myIDE), .packages="kfino") %dopar%