#' @param nu1 numeric. The degrees of freedom of the first distribution.
#' @param Sigma1 symmetric, positive-definite matrix. The scatter matrix of the first distribution.
#' @param nu2 numeric. The degrees of freedom of the second distribution.
#' @param Sigma2 symmetric, positive-definite matrix. The scatter matrix of the second distribution.
#' @param eps numeric. Precision for the computation of the partial derivative of the Lauricella \eqn{D}-hypergeometric function (see Details). Default: 1e-06.
#' @return A numeric value: the Kullback-Leibler divergence between the two distributions,
#' with two attributes \code{attr(, "epsilon")} (precision of the partial derivative of the Lauricella \eqn{D}-hypergeometric function,see Details)
#' and \code{attr(, "k")} (number of iterations).
#'
#' @details Given \eqn{X_1}, a random vector of \eqn{R^p} distributed according to the centered MTD
#' with parameters \eqn{(\nu_1, 0, \Sigma_1)}
#' and \eqn{X_2}, a random vector of \eqn{R^p} distributed according to the MCD
#' with parameters \eqn{(\nu_2, 0, \Sigma_2)}.
#'
#' Let \eqn{\lambda_1, \dots, \lambda_p} the eigenvalues of the square matrix \eqn{\Sigma_1 \Sigma_2^{-1}}
#' The computation of the partial derivative uses the \code{\link{pochhammer}} function.
#'
#' @author Pierre Santagostini, Nizar Bouhlel
#' @references N. Bouhlel and D. Rousseau (2023), Exact Rényi and Kullback-Leibler Divergences Between Multivariate t-Distributions, IEEE Signal Processing Letters.
#' @param nu1 numeric. The degrees of freedom of the first distribution.
#' @param Sigma1 symmetric, positive-definite matrix. The scatter matrix of the first distribution.
#' @param nu2 numeric. The degrees of freedom of the second distribution.
#' @param Sigma2 symmetric, positive-definite matrix. The scatter matrix of the second distribution.
#' @param eps numeric. Precision for the computation of the partial derivative of the Lauricella \eqn{D}-hypergeometric function (see Details). Default: 1e-06.
#' @return A numeric value: the Kullback-Leibler divergence between the two distributions,
#' with two attributes \code{attr(, "epsilon")} (precision of the partial derivative of the Lauricella \eqn{D}-hypergeometric function,see Details)
#' and \code{attr(, "k")} (number of iterations).
#'
#' @details Given \eqn{X_1}, a random vector of \eqn{\mathbb{R}^p} distributed according to the centered MTD
#' with parameters \eqn{(\nu_1, 0, \Sigma_1)}
#' and \eqn{X_2}, a random vector of \eqn{\mathbb{R}^p} distributed according to the MCD
#' with parameters \eqn{(\nu_2, 0, \Sigma_2)}.
#'
#' Let \eqn{\lambda_1, \dots, \lambda_p} the eigenvalues of the square matrix \eqn{\Sigma_1 \Sigma_2^{-1}}
#' <!-- The computation of the partial derivative uses the \code{\link{pochhammer}} function. -->
#'
#' @author Pierre Santagostini, Nizar Bouhlel
#' @references N. Bouhlel and D. Rousseau (2023), Exact Rényi and Kullback-Leibler Divergences Between Multivariate t-Distributions, IEEE Signal Processing Letters.