Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
mstudentd
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Admin message
A compter du 1er avril, attention à vos pipelines :
Nouvelles limitations de Docker Hub
Show more breadcrumbs
ImHorPhen
mstudentd
Commits
2e498bd0
Commit
2e498bd0
authored
8 months ago
by
SANTAGOSTINI Pierre
Browse files
Options
Downloads
Patches
Plain Diff
New dlauricella() function. Called by kldstudent()
parent
4f0ba111
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
R/dlauricella.R
+456
-0
456 additions, 0 deletions
R/dlauricella.R
with
456 additions
and
0 deletions
R/dlauricella.R
0 → 100644
+
456
−
0
View file @
2e498bd0
dlauricella
<-
function
(
nu1
,
nu2
,
lambda
,
eps
=
1e-6
)
{
p
<-
length
(
lambda
)
buildMlist
<-
function
(
j
,
isupp
,
k
,
k1
,
p
=
p
)
{
jsupp
<-
isupp
[,
j
]
Ml
<-
rep
(
list
(
0
:
k
),
p
)
for
(
j
in
jsupp
)
Ml
[[
j
]]
<-
k1
return
(
expand.grid
(
Ml
))
}
buildxlist
<-
function
(
j
,
isupp
,
x
,
xsupp
,
p
=
p
)
{
jsupp
<-
isupp
[,
j
]
xl
<-
rep
(
list
(
x
),
p
)
xl
[
jsupp
]
<-
xsupp
[
jsupp
]
xl
[
-
jsupp
]
<-
x
[
-
jsupp
]
return
(
expand.grid
(
xl
))
}
prodlambda
<-
prod
(
lambda
)
lambdanu
<-
lambda
*
nu1
/
nu2
prodlambdanu
<-
prod
(
lambdanu
)
k
<-
5
# M: data.frame of the indices for the nested sums
# (i.e. all arrangements of n elements from {0:k})
M
<-
expand.grid
(
rep
(
list
(
0
:
k
),
p
))
M
<-
M
[
-1
,
,
drop
=
FALSE
]
Munique
<-
0
:
k
# Sum of the indices
Msum
<-
rowSums
(
M
)
# Msumunique <- 0:max(Msum)
kstep
<-
5
if
(
lambdanu
[
p
]
<=
1
)
{
# lambda[1] < ... < lambda[p] < 1
if
(
p
>
1
&
lambda
[
p
]
==
1
)
{
lambda
<-
lambda
[
1
:
(
p
-1
)]
p1
<-
p
-1
M
<-
expand.grid
(
rep
(
list
(
Munique
),
p1
))
M
<-
M
[
-1
,
,
drop
=
FALSE
]
# Sum of the indices
Msum
<-
rowSums
(
M
)
}
else
{
p1
<-
p
}
Mpoch
<-
sapply
(
Munique
,
function
(
j
)
lnpochhammer
(
0.5
,
j
))
matpoch
<-
matrix
(
rep
(
Mpoch
,
p1
),
ncol
=
p1
,
byrow
=
FALSE
)
matM
<-
matrix
(
rep
(
Munique
,
p1
),
ncol
=
p1
,
byrow
=
FALSE
)
matlabmda
<-
matrix
(
rep
(
log
(
1
-
lambdanu
[
1
:
p1
]),
length
(
Munique
)),
ncol
=
p1
,
byrow
=
TRUE
)
lambdaM
<-
matlabmda
*
matM
matfact
<-
matrix
(
rep
(
lfactorial
(
Munique
),
p1
),
ncol
=
p1
,
byrow
=
FALSE
)
# matcommun <- exp(matpoch + lambdaM - matfact)
matcommun
<-
as.data.frame
(
matpoch
+
lambdaM
-
matfact
)
# matcommun <- as.data.frame(apply(matcommun, 2, Re))
matcommunsupp
<-
as.data.frame
(
matrix
(
nrow
=
0
,
ncol
=
ncol
(
matcommun
)))
colnames
(
matcommunsupp
)
<-
colnames
(
matcommun
)
gridcommun
<-
expand.grid
(
matcommun
)
gridcommun
<-
gridcommun
[
-1
,
,
drop
=
FALSE
]
# commun <- apply(gridcommun, 1, prod)
commun
<-
rowSums
(
gridcommun
)
# d <- sum(
# commun * sapply(Msum, function(i) {
# pochhammer(1, i) / ( pochhammer((nu1 + p)/2, i) * i )
# })
# )
d
<-
Re
(
sum
(
exp
(
commun
+
sapply
(
Msum
,
function
(
i
)
{
lnpochhammer
(
1
,
i
)
-
(
lnpochhammer
((
nu1
+
p
)
/
2
,
i
)
+
log
(
i
)
)
})
)))
# Next elements of the sum, until the expected precision
k1
<-
1
:
k
derive
<-
0
while
(
abs
(
d
)
>
eps
/
10
&
!
is.nan
(
d
))
{
epsret
<-
signif
(
abs
(
d
),
1
)
*
10
k
<-
k1
[
length
(
k1
)]
k1
<-
k
+
(
1
:
kstep
)
derive
<-
derive
+
d
# M: data.frame of the indices for the nested sums
# M <- expand.grid(rep(list(k1), p1))
# if (p1 > 1) {
# for (i in 1:(p1-1)) {
# indsupp <- combn(p1, i)
# for (j in 1:ncol(indsupp)) {
# jsupp <- indsupp[, j]
# Mlist <- vector("list", p1)
# for (l in jsupp) Mlist[[l]] <- k1
# for (l in (1:p1)[-jsupp]) Mlist[[l]] <- 0:k
# M <- rbind(M, expand.grid(Mlist))
# }
# }
# }
Mlist
<-
list
(
expand.grid
(
rep
(
list
(
k1
),
p1
)))
if
(
p1
==
1
)
{
M
<-
Mlist
[[
1
]]
}
if
(
p1
>
1
)
{
for
(
i
in
1
:
(
p1
-1
))
{
indsupp
<-
combn
(
p1
,
i
)
Mlist
<-
c
(
Mlist
,
lapply
(
1
:
ncol
(
indsupp
),
buildMlist
,
isupp
=
indsupp
,
k
=
k
,
k1
=
k1
,
p
=
p1
))
}
M
<-
data.frame
(
rbindlist
(
Mlist
))
}
# Sum of the indices
Msum
<-
rowSums
(
M
)
Munique
<-
(
max
(
Munique
)
+1
)
:
max
(
M
)
# Msumunique <- (max(Msumunique)+1):max(Msum)
Mpoch
<-
sapply
(
Munique
,
function
(
j
)
lnpochhammer
(
0.5
,
j
))
matpoch
<-
matrix
(
rep
(
Mpoch
,
p1
),
ncol
=
p1
,
byrow
=
FALSE
)
matM
<-
matrix
(
rep
(
Munique
,
p1
),
ncol
=
p1
,
byrow
=
FALSE
)
matlabmda
<-
matrix
(
rep
(
log
(
1
-
lambdanu
[
1
:
p1
]),
length
(
Munique
)),
ncol
=
p1
,
byrow
=
TRUE
)
lambdaM
<-
matlabmda
*
matM
matfact
<-
matrix
(
rep
(
lfactorial
(
Munique
),
p1
),
ncol
=
p1
,
byrow
=
FALSE
)
matcommun
<-
rbind
(
matcommun
,
matcommunsupp
)
# matcommunsupp <- exp(matpoch + lambdaM - matfact)
matcommunsupp
<-
as.data.frame
(
matpoch
+
lambdaM
-
matfact
)
# matcommunsupp <- as.data.frame(apply(matcommunsupp, 2, Re))
colnames
(
matcommunsupp
)
<-
colnames
(
matcommun
)
communlist
<-
list
(
expand.grid
(
matcommunsupp
))
if
(
p1
==
1
)
{
gridcommun
<-
communlist
[[
1
]]
}
if
(
p1
>
1
)
{
for
(
i
in
1
:
(
p1
-1
))
{
indsupp
<-
combn
(
p1
,
i
)
communlist
<-
c
(
communlist
,
lapply
(
1
:
ncol
(
indsupp
),
buildxlist
,
isupp
=
indsupp
,
x
=
matcommun
,
xsupp
=
matcommunsupp
,
p
=
p1
))
}
names
(
communlist
[[
1
]])
<-
names
(
communlist
[[
2
]])
gridcommun
<-
data.frame
(
rbindlist
(
communlist
))
}
# commun <- apply(gridcommun, 1, prod)
commun
<-
rowSums
(
gridcommun
)
# d <- sum(
# commun * sapply(Msum, function(i) {
# pochhammer(1, i) / ( pochhammer((nu1 + p)/2, i) * i )
# })
# )
d
<-
Re
(
sum
(
exp
(
commun
+
sapply
(
Msum
,
function
(
i
)
{
lnpochhammer
(
1
,
i
)
-
(
lnpochhammer
((
nu1
+
p
)
/
2
,
i
)
+
log
(
i
)
)
})
)))
}
derive
<-
as.numeric
(
-0.5
*
log
(
prodlambda
)
-
(
nu2
+
p
)
/
2
*
derive
)
}
else
if
(
lambdanu
[
1
]
>
1
)
{
# 1 < lambda[1] < ... < lambda[p]
Mpoch
<-
sapply
(
Munique
,
function
(
j
)
lnpochhammer
(
0.5
,
j
))
matpoch
<-
matrix
(
rep
(
Mpoch
,
p
),
ncol
=
p
,
byrow
=
FALSE
)
matM
<-
matrix
(
rep
(
Munique
,
p
),
ncol
=
p
,
byrow
=
FALSE
)
matlabmda
<-
matrix
(
rep
(
log
(
1
-
1
/
lambdanu
),
length
(
Munique
)),
ncol
=
p
,
byrow
=
TRUE
)
lambdaM
<-
matlabmda
*
matM
matfact
<-
matrix
(
rep
(
lfactorial
(
Munique
),
p
),
ncol
=
p
,
byrow
=
FALSE
)
# matcommun <- exp(matpoch + lambdaM - matfact)
matcommun
<-
as.data.frame
(
matpoch
+
lambdaM
-
matfact
)
# matcommun <- as.data.frame(apply(matcommun, 2, Re))
matcommunsupp
<-
as.data.frame
(
matrix
(
nrow
=
0
,
ncol
=
ncol
(
matcommun
)))
colnames
(
matcommunsupp
)
<-
colnames
(
matcommun
)
gridcommun
<-
expand.grid
(
matcommun
)
gridcommun
<-
gridcommun
[
-1
,
,
drop
=
FALSE
]
# commun <- apply(gridcommun, 1, prod)
commun
<-
rowSums
(
gridcommun
)
d
<-
0
for
(
i
in
1
:
length
(
Msum
))
{
A
<-
sum
(
1
/
(
0
:
(
Msum
[
i
]
-1
)
+
(
nu1
+
p
)
/
2
))
d
<-
d
-
exp
(
commun
[
i
])
*
A
}
d
<-
Re
(
d
)
# Next elements of the sum, until the expected precision
k1
<-
1
:
k
derive
<-
0
# vd <- vderive <- numeric()
while
(
abs
(
d
)
>
eps
/
10
&
!
is.nan
(
d
))
{
epsret
<-
signif
(
abs
(
d
),
1
)
*
10
k
<-
k1
[
length
(
k1
)]
k1
<-
k
+
(
1
:
kstep
)
derive
<-
derive
+
d
# vd <- c(vd, d); vderive <- c(vderive, derive)
# # M: data.frame of the indices for the nested sums
# M <- as.data.frame(matrix(nrow = 0, ncol = p))
# if (p > 1) {
# for (i in 1:(p-1)) {
# Mlist <- c( rep(list(0:k), p-i), rep(list(k1), i) )
# M <- rbind( M, expand.grid(Mlist) )
# for (j in 1:(p-1)) {
# Mlist <- Mlist[c(p, 1:(p-1))]
# M <- rbind(M, expand.grid(Mlist))
# }
# }
# }
# M <- rbind( M, expand.grid(rep(list(k1), p)) )
# M: data.frame of the indices for the nested sums
# M <- expand.grid(rep(list(k1), p))
# if (p > 1) {
# for (i in 1:(p-1)) {
# indsupp <- combn(p, i)
# for (j in 1:ncol(indsupp)) {
# jsupp <- indsupp[, j]
# Mlist <- vector("list", p)
# for (l in jsupp) Mlist[[l]] <- k1
# for (l in (1:p)[-jsupp]) Mlist[[l]] <- 0:k
# M <- rbind(M, expand.grid(Mlist))
# }
# }
# }
Mlist
<-
list
(
expand.grid
(
rep
(
list
(
k1
),
p
)))
if
(
p
==
1
)
{
M
<-
Mlist
[[
1
]]
}
if
(
p
>
1
)
{
for
(
i
in
1
:
(
p
-1
))
{
indsupp
<-
combn
(
p
,
i
)
Mlist
<-
c
(
Mlist
,
lapply
(
1
:
ncol
(
indsupp
),
buildMlist
,
isupp
=
indsupp
,
k
=
k
,
k1
=
k1
,
p
=
p
))
}
M
<-
data.frame
(
rbindlist
(
Mlist
))
}
Msum
<-
rowSums
(
M
)
Munique
<-
(
max
(
Munique
)
+
1
)
:
max
(
M
)
# Msumunique <- (max(Msumunique) + 1):max(Msum)
# d <- 0
# for (i in 1:length(Msum)) {
# commun <- prod(
# sapply(1:p, function(j) {
# pochhammer(0.5, M[i, j])*(1 - 1/lambda[j])^M[i, j]/factorial(M[i, j])
# })
# )
# A <- sum(1/(0:(Msum[i]-1) + (1+p)/2))
# d <- d - commun * A # / pochhammer((1 + p)/2, Msum[i])
# }
Mpoch
<-
sapply
(
Munique
,
function
(
j
)
lnpochhammer
(
0.5
,
j
))
matpoch
<-
matrix
(
rep
(
Mpoch
,
p
),
ncol
=
p
,
byrow
=
FALSE
)
matM
<-
matrix
(
rep
(
Munique
,
p
),
ncol
=
p
,
byrow
=
FALSE
)
matlabmda
<-
matrix
(
rep
(
log
(
1
-
1
/
lambdanu
),
length
(
Munique
)),
ncol
=
p
,
byrow
=
TRUE
)
lambdaM
<-
matlabmda
*
matM
matfact
<-
matrix
(
rep
(
lfactorial
(
Munique
),
p
),
ncol
=
p
,
byrow
=
FALSE
)
matcommun
<-
rbind
(
matcommun
,
matcommunsupp
)
# matcommunsupp <- exp(matpoch + lambdaM - matfact)
matcommunsupp
<-
as.data.frame
(
matpoch
+
lambdaM
-
matfact
)
# matcommunsupp <- as.data.frame(apply(matcommunsupp, 2, Re))
colnames
(
matcommunsupp
)
<-
colnames
(
matcommun
)
communlist
<-
list
(
expand.grid
(
matcommunsupp
))
if
(
p
==
1
)
{
gridcommun
<-
communlist
[[
1
]]
}
if
(
p
>
1
)
{
for
(
i
in
1
:
(
p
-1
))
{
indsupp
<-
combn
(
p
,
i
)
communlist
<-
c
(
communlist
,
lapply
(
1
:
ncol
(
indsupp
),
buildxlist
,
isupp
=
indsupp
,
x
=
matcommun
,
xsupp
=
matcommunsupp
,
p
=
p
))
}
names
(
communlist
[[
1
]])
<-
names
(
communlist
[[
2
]])
gridcommun
<-
data.frame
(
rbindlist
(
communlist
))
}
# commun <- apply(gridcommun, 1, prod)
commun
<-
rowSums
(
gridcommun
)
# d <- 0
# for (i in 1:length(Msum)) {
# A <- sum(1/(0:(Msum[i]-1) + (1+p)/2))
# d <- d - commun[i] * A
# }
A
<-
sapply
(
Msum
,
function
(
i
)
sum
(
1
/
(
0
:
(
i
-1
)
+
(
nu1
+
p
)
/
2
)))
d
<-
Re
(
-
sum
(
exp
(
commun
)
*
A
))
}
derive
<-
as.numeric
(
-0.5
*
log
(
prodlambda
)
-
(
nu2
+
p
)
/
2
*
prod
(
1
/
sqrt
(
lambdanu
))
*
derive
)
}
else
{
# lambda[1] < ... < 1 < ... < lambda[p]
Mpoch
<-
sapply
(
Munique
,
function
(
j
)
lnpochhammer
(
0.5
,
j
))
matpoch
<-
cbind
(
matrix
(
rep
(
Mpoch
,
p
-1
),
ncol
=
p
-1
,
byrow
=
FALSE
),
0
)
matM
<-
matrix
(
rep
(
Munique
,
p
),
ncol
=
p
,
byrow
=
FALSE
)
matlabmda
<-
matrix
(
rep
(
log
(
1
-
c
(
lambdanu
[
-
p
],
1
)
/
lambdanu
[
p
]),
length
(
Munique
)),
ncol
=
p
,
byrow
=
TRUE
)
lambdaM
<-
matlabmda
*
matM
matfact
<-
matrix
(
rep
(
lfactorial
(
Munique
),
p
),
ncol
=
p
,
byrow
=
FALSE
)
# matcommun <- exp(matpoch + lambdaM - matfact)
matcommun
<-
as.data.frame
(
matpoch
+
lambdaM
-
matfact
)
# matcommun <- as.data.frame(apply(matcommun, 2, Re))
matcommunsupp
<-
as.data.frame
(
matrix
(
nrow
=
0
,
ncol
=
ncol
(
matcommun
)))
colnames
(
matcommunsupp
)
<-
colnames
(
matcommun
)
gridcommun
<-
expand.grid
(
matcommun
)
gridcommun
<-
gridcommun
[
-1
,
,
drop
=
FALSE
]
# commun <- apply(gridcommun, 1, prod)
commun
<-
rowSums
(
gridcommun
)
# d <- sum(
# commun * sapply(1:length(Msum), function(i) {
# pochhammer(0.5, M[i, p]) * pochhammer(1, Msum[i]) / ( pochhammer((nu1 + p)/2, Msum[i]) * Msum[i] )
# })
# )
d
<-
Re
(
sum
(
exp
(
commun
+
sapply
(
1
:
length
(
Msum
),
function
(
i
)
{
lnpochhammer
(
0.5
,
M
[
i
,
p
])
+
lnpochhammer
(
1
,
Msum
[
i
])
-
(
lnpochhammer
((
nu1
+
p
)
/
2
,
Msum
[
i
])
+
log
(
Msum
[
i
])
)
})
)))
# Next elements of the sum, until the expected precision
k1
<-
1
:
k
derive
<-
0
while
(
abs
(
d
)
>
eps
/
10
&
!
is.nan
(
d
))
{
epsret
<-
signif
(
abs
(
d
),
1
)
*
10
k
<-
k1
[
length
(
k1
)]
k1
<-
k
+
(
1
:
kstep
)
derive
<-
derive
+
d
# # M: data.frame of the indices for the nested sums
# M <- as.data.frame(matrix(nrow = 0, ncol = p))
# if (p > 1) {
# for (i in 1:(p-1)) {
# Mlist <- c( rep(list(0:k), p-i), rep(list(k1), i) )
# M <- rbind( M, expand.grid(Mlist) )
# for (j in 1:(p-1)) {
# Mlist <- Mlist[c(p, 1:(p-1))]
# M <- rbind(M, expand.grid(Mlist))
# }
# }
# }
# M <- rbind( M, expand.grid(rep(list(k1), p)) )
# M <- expand.grid(rep(list(k1), p))
# if (p > 1) {
# for (i in 1:(p-1)) {
# indsupp <- combn(p, i)
# for (j in 1:ncol(indsupp)) {
# jsupp <- indsupp[, j]
# Mlist <- vector("list", p)
# for (l in jsupp) Mlist[[l]] <- k1
# for (l in (1:p)[-jsupp]) Mlist[[l]] <- 0:k
# M <- rbind(M, expand.grid(Mlist))
# }
# }
# }
# M: data.frame of the indices for the nested sums
Mlist
<-
list
(
expand.grid
(
rep
(
list
(
k1
),
p
)))
if
(
p
==
1
)
{
M
<-
Mlist
[[
1
]]
}
if
(
p
>
1
)
{
for
(
i
in
1
:
(
p
-1
))
{
indsupp
<-
combn
(
p
,
i
)
Mlist
<-
c
(
Mlist
,
lapply
(
1
:
ncol
(
indsupp
),
buildMlist
,
isupp
=
indsupp
,
k
=
k
,
k1
=
k1
,
p
=
p
))
}
M
<-
data.frame
(
rbindlist
(
Mlist
))
}
Msum
<-
rowSums
(
M
)
Munique
<-
(
max
(
Munique
)
+1
)
:
max
(
M
)
# Msumunique <- (max(Msumunique)+1):max(Msum)
# d <- 0
# for (i in 1:length(Msum)) {
# commun <- prod(
# sapply(1:(p-1), function(j) {
# pochhammer(0.5, M[i, j])*(1 - lambda[j]/lambda[p])^M[i, j]/factorial(M[i, j])
# })
# )
# commun <- commun*(1 - 1/lambda[p])^M[i, p]/factorial(M[i, p])
# d <- d + commun * pochhammer(0.5, M[i, p])*pochhammer(1, Msum[i]) / ( pochhammer((1 + p)/2, Msum[i]) * Msum[i] )
# }
Mpoch
<-
sapply
(
Munique
,
function
(
j
)
lnpochhammer
(
0.5
,
j
))
matpoch
<-
cbind
(
matrix
(
rep
(
Mpoch
,
p
-1
),
ncol
=
p
-1
,
byrow
=
FALSE
),
0
)
matM
<-
matrix
(
rep
(
Munique
,
p
),
ncol
=
p
,
byrow
=
FALSE
)
matlabmda
<-
matrix
(
rep
(
log
(
1
-
c
(
lambdanu
[
-
p
],
1
)
/
lambdanu
[
p
]),
length
(
Munique
)),
ncol
=
p
,
byrow
=
TRUE
)
lambdaM
<-
matlabmda
*
matM
matfact
<-
matrix
(
rep
(
lfactorial
(
Munique
),
p
),
ncol
=
p
,
byrow
=
FALSE
)
matcommun
<-
rbind
(
matcommun
,
matcommunsupp
)
# matcommunsupp <- exp(matpoch + lambdaM - matfact)
matcommunsupp
<-
as.data.frame
(
matpoch
+
lambdaM
-
matfact
)
# matcommunsupp <- as.data.frame(apply(matcommunsupp, 2, Re))
colnames
(
matcommunsupp
)
<-
colnames
(
matcommun
)
communlist
<-
list
(
expand.grid
(
matcommunsupp
))
if
(
p
==
1
)
{
gridcommun
<-
communlist
[[
1
]]
}
if
(
p
>
1
)
{
for
(
i
in
1
:
(
p
-1
))
{
indsupp
<-
combn
(
p
,
i
)
communlist
<-
c
(
communlist
,
lapply
(
1
:
ncol
(
indsupp
),
buildxlist
,
isupp
=
indsupp
,
x
=
matcommun
,
xsupp
=
matcommunsupp
,
p
=
p
))
}
names
(
communlist
[[
1
]])
<-
names
(
communlist
[[
2
]])
gridcommun
<-
data.frame
(
rbindlist
(
communlist
))
}
commun
<-
apply
(
gridcommun
,
1
,
prod
)
commun
<-
rowSums
(
gridcommun
)
# d <- sum(
# commun * sapply(1:length(Msum), function(i) {
# pochhammer(0.5, M[i, p]) * pochhammer(1, Msum[i]) / ( pochhammer((nu1 + p)/2, Msum[i]) * Msum[i] )
# })
# )
d
<-
Re
(
sum
(
exp
(
commun
+
sapply
(
1
:
length
(
Msum
),
function
(
i
)
{
lnpochhammer
(
0.5
,
M
[
i
,
p
])
+
lnpochhammer
(
1
,
Msum
[
i
])
-
(
lnpochhammer
((
nu1
+
p
)
/
2
,
Msum
[
i
])
+
log
(
Msum
[
i
])
)
})
)))
}
derive
<-
as.numeric
(
-0.5
*
log
(
prodlambda
)
+
(
nu2
+
p
)
/
2
*
(
log
(
lambdanu
[
p
])
-
derive
))
}
attr
(
derive
,
"epsilon"
)
<-
eps
attr
(
derive
,
"k"
)
<-
k
return
(
derive
)
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment