Skip to content
Snippets Groups Projects
Commit ad4ac5e1 authored by SANTAGOSTINI Pierre's avatar SANTAGOSTINI Pierre
Browse files

Small corrections

parent f82cc41d
No related branches found
No related tags found
No related merge requests found
......@@ -23,9 +23,9 @@ Computes the Kullback-Leibler divergence between two random vectors distributed
according to multivariate Cauchy distributions (MCD) with zero location vector.
}
\details{
Given \eqn{X_1}, a random vector of \eqn{R^p} distributed according to the MCD
Given \eqn{X_1}, a random vector of \eqn{\mathbb{R}^p} distributed according to the MCD
with parameters \eqn{(0, \Sigma_1)}
and \eqn{X_2}, a random vector of \eqn{R^p} distributed according to the MCD
and \eqn{X_2}, a random vector of \eqn{\mathbb{R}^p} distributed according to the MCD
with parameters \eqn{(0, \Sigma_2)}.
Let \eqn{\lambda_1, \dots, \lambda_p} the eigenvalues of the square matrix \eqn{\Sigma_1 \Sigma_2^{-1}}
......@@ -48,9 +48,9 @@ is given by:
}
where \eqn{F_D^{(p)}} is the Lauricella \eqn{D}-hypergeometric function defined for \eqn{p} variables:
\deqn{ \displaystyle{ F_D^{(p)}\left(a; b_1, ..., b_p; g; x_1, ..., x_p\right) = \sum\limits_{m_1 \geq 0} ... \sum\limits_{m_p \geq 0}{ \frac{ (a)_{m_1+...+m_p}(b_1)_{m_1} ... (b_p)_{m_p} }{ (g)_{m_1+...+m_p} } \frac{x_1^{m_1}}{m_1!} ... \frac{x_p^{m_p}}{m_p!} } } }
The computation of the partial derivative uses the \code{\link{pochhammer}} function.
\deqn{ \displaystyle{ F_D^{(p)}\left(a; b_1, ..., b_p; g; x_1, ..., x_p\right) = \sum\limits_{m_1 \geq 0} ... \sum\limits_{m_p \geq 0}{ \frac{ (a)_{m_1+...+m_p}(b_1)_{m_1} ... (b_p)_{m_p} }{ (g)_{m_1+...+m_p} } \frac{x_1^{m_1}}{m_1!} ... \frac{x_p^{m_p}}{m_p!} } } }\if{html}{\out{
<!-- The computation of the partial derivative uses the \code{\link{pochhammer}} function. -->
}}
}
\examples{
\donttest{
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment