From ad4ac5e12a649082f2e33230d2dc9184ea47d5d4 Mon Sep 17 00:00:00 2001 From: Pierre Santagostini <pierre.santagostini@agrocampus-ouest.fr> Date: Thu, 4 Jul 2024 20:44:09 +0200 Subject: [PATCH] Small corrections --- man/kldcauchy.Rd | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/man/kldcauchy.Rd b/man/kldcauchy.Rd index d53f68f..95d2df4 100644 --- a/man/kldcauchy.Rd +++ b/man/kldcauchy.Rd @@ -23,9 +23,9 @@ Computes the Kullback-Leibler divergence between two random vectors distributed according to multivariate Cauchy distributions (MCD) with zero location vector. } \details{ -Given \eqn{X_1}, a random vector of \eqn{R^p} distributed according to the MCD +Given \eqn{X_1}, a random vector of \eqn{\mathbb{R}^p} distributed according to the MCD with parameters \eqn{(0, \Sigma_1)} -and \eqn{X_2}, a random vector of \eqn{R^p} distributed according to the MCD +and \eqn{X_2}, a random vector of \eqn{\mathbb{R}^p} distributed according to the MCD with parameters \eqn{(0, \Sigma_2)}. Let \eqn{\lambda_1, \dots, \lambda_p} the eigenvalues of the square matrix \eqn{\Sigma_1 \Sigma_2^{-1}} @@ -48,9 +48,9 @@ is given by: } where \eqn{F_D^{(p)}} is the Lauricella \eqn{D}-hypergeometric function defined for \eqn{p} variables: -\deqn{ \displaystyle{ F_D^{(p)}\left(a; b_1, ..., b_p; g; x_1, ..., x_p\right) = \sum\limits_{m_1 \geq 0} ... \sum\limits_{m_p \geq 0}{ \frac{ (a)_{m_1+...+m_p}(b_1)_{m_1} ... (b_p)_{m_p} }{ (g)_{m_1+...+m_p} } \frac{x_1^{m_1}}{m_1!} ... \frac{x_p^{m_p}}{m_p!} } } } - -The computation of the partial derivative uses the \code{\link{pochhammer}} function. +\deqn{ \displaystyle{ F_D^{(p)}\left(a; b_1, ..., b_p; g; x_1, ..., x_p\right) = \sum\limits_{m_1 \geq 0} ... \sum\limits_{m_p \geq 0}{ \frac{ (a)_{m_1+...+m_p}(b_1)_{m_1} ... (b_p)_{m_p} }{ (g)_{m_1+...+m_p} } \frac{x_1^{m_1}}{m_1!} ... \frac{x_p^{m_p}}{m_p!} } } }\if{html}{\out{ +<!-- The computation of the partial derivative uses the \code{\link{pochhammer}} function. --> +}} } \examples{ \donttest{ -- GitLab