Skip to content
Snippets Groups Projects
sparseSIR.R 19.1 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
################################################################################
# sparse SIR
################################################################################
#' @import glmnet
#' @importFrom stats predict
#' 
#' @title sparse SIR
#' @export
#'
#' @description
#' \code{sparseSIR} performs the second step of the method (shrinkage of ridge
#' SIR results
#'
#' @param object an object of class \code{ridgeRes} as obtained from the 
#' function \code{\link{ridgeSIR}}
#' @param inter_len (numeric) vector with interval lengths
#' @param adaptive should the function returns the list of strong zeros and non
#' strong zeros (logical). Default to FALSE
#' @param sel_prop used only when \code{adaptive = TRUE}. Fraction of the 
#' coefficients that will be considered as strong zeros and strong non zeros.
#' Default to 0.05
#' @param parallel whether the computation should be performed in parallel or
#' not. Logical. Default is FALSE
#' @param ncores number of cores to use if \code{parallel = TRUE}. If left to 
#' NULL, all available cores minus one are used
#' 
#' @author {Victor Picheny, \email{victor.picheny@inra.fr}
#' 
#' Remi Servien, \email{remi.servien@inra.fr}
#' 
#' Nathalie Villa-Vialaneix, \email{nathalie.villa-vialaneix@inra.fr}}
#' 
#' @references {Picheny, V., Servien, R. and Villa-Vialaneix, N. (2016) 
#' Interpretable sparse SIR for digitized functional data. \emph{Preprint}.}
#' 
#' @seealso \code{\link{ridgeSIR}}, \code{\link{project.sparseRes}}, 
#' \code{\link{SISIR}}
#' 
#' @examples
#' set.seed(1140)
#' tsteps <- seq(0, 1, length = 200)
#' nsim <- 100
#' simulate_bm <- function() return(c(0, cumsum(rnorm(length(tsteps)-1, sd=1))))
#' x <- t(replicate(nsim, simulate_bm()))
#' beta <- cbind(sin(tsteps*3*pi/2), sin(tsteps*5*pi/2))
#' beta[((tsteps < 0.2) || (tsteps > 0.5)), 1] <- 0
#' beta[((tsteps < 0.6) || (tsteps > 0.75)), 2] <- 0
#' y <- log(abs(x %*% beta[ ,1]) + 1) + sqrt(abs(x %*% beta[ ,2]))
#' y <- y + rnorm(nsim, sd = 0.1)
#' res_ridge <- ridgeSIR(x, y, H = 10, d = 2, mu2 = 10^8)
#' res_sparse <- sparseSIR(res_ridge, rep(10, 20))
#' 
#' @return S3 object of class \code{sparseRes}: a list consisting of
#' \itemize{
#'    \item{\code{sEDR}}{ the estimated EDR space (a p x d matrix)}
#'    \item{\code{alpha}}{ the estimated shrinkage coefficients (a vector having
#'    a length similar to \code{inter_len})}
#'    \item{\code{quality}}{ a vector with various qualities for the model (see
#'    Details)}
#'    \item{\code{adapt_res}}{ if \code{adaptive = TRUE}, a list of two vectors: 
#'    \itemize{
#'      \item{\code{nonzeros}}{ indexes of variables that are strong non zeros}
#'      \item{\code{zeros}}{ indexes of variables that are strong zeros}
#'    }}
#'    \item{\code{parameters}}{ a list of hyper-parameters for the method: 
#'    \itemize{
#'      \item{\code{inter_len}}{ lengths of intervals}
#'      \item{\code{sel_prop}}{ if \code{adaptive = TRUE}, fraction of the 
#'      coefficients which are considered as strong zeros or strong non zeros}
#'    }}
#'    \item{\code{rSIR}}{ same as the input \code{object}}
#'    \item{\code{fit}}{ a list for LASSO fit with:
#'    \itemize{
#'      \item{\code{glmnet}} result of the \code{\link[glmnet]{glmnet}} function
#'      \item{\code{lambda}} value of the best Lasso parameter by CV
#'      \item{\code{x}} exploratory variable values as passed to fit the model
#'    }}
#'  }
#'  
#'  @details Different quality criteria used to select the best models among a
#'  list of models with different interval definitions. Quality criteria are:
#'  log-likelihood (\code{loglik}), cross-validation error as provided by the
#'  function \code{\link[glmnet]{glmnet}}, two versions of the AIC (\code{AIC} 
#'  and \code{AIC2}) and of the BIC (\code{BIC} and \code{BIC2}) in which the 
#'  number of parameters is either the number of non null intervals or the 
#'  number of non null parameters with respect to the original variables.

sparseSIR <- function(object, inter_len, adaptive = FALSE, sel_prop = 0.05,
                      parallel = FALSE, ncores = NULL) {
  if (parallel) {
    if (is.null(ncores)) ncores <- min(detectCores() - 1)
    registerDoParallel(cores = ncores)
  }
  oldwarn <- getOption("warn")
  options(warn = -1)
  
  H <- object$parameters$H
  D <- length(inter_len)
  p <- nrow(object$EDR)
  if (sum(inter_len) != p)
    stop("Sum of 'inter_len' must be equal to the number of columns in original dataset.")
  d <- ncol(object$EDR)
  cmean_x <- object$utils$cmean_x
  slices <- object$utils$slices
  rEDR <- object$EDR
  x <- object$data$x
  
  coef_elastic <- 1 # note: can be passed as an argument for elastinet
  
  # definition of the dependant variable: vector of length dn
  Proj <- crossprod(sweep(cmean_x[ ,slices], 1, apply(x, 2, mean), "-") , rEDR)
  Proj <- as.vector(Proj)
  
  # definition of the explanatory variables: matrix of dimension (dn)xD
  explanatory <- apply(rEDR, 2, function(acol) {
    Delta <- matrix(0, p, D)
    Delta[cbind(1:p, rep(1:D, inter_len))] <- acol
    return(list("out" = x %*% Delta))
  })
  explanatory <- lapply(explanatory, function(alist) alist$out)
  explanatory <- Reduce(rbind, explanatory)
  
  # model fit (CV)
  fit <- cv.glmnet(x = explanatory, y = Proj, alpha = coef_elastic, 
                   parallel = parallel)
  if (parallel) {
    stopImplicitCluster()
  }
  if (length(fit$lambda) < 20) {# in this case, fit on a very fine grid
    lambda_seq <- fit$lambda[1] * 10^(-seq(1, 10, length = 1000))
    fit <- cv.glmnet(x = explanatory, y = Proj, alpha = coef_elastic, 
                     lambda = lambda_seq, parallel = parallel)
    if (parallel) {
      stopImplicitCluster()
    }
  }
  best_lambda <- fit$lambda.min
  ind_best <- which(best_lambda == fit$lambda.min)
  
  # re-fit with a finer grid to obtain the whole regularization path (no CV)
  seq_lambda <- c(as.vector(outer(seq(1:990)/100, 10**(1:-10), "*")),
                  best_lambda)
  seq_lambda <- sort(unique(seq_lambda), decreasing = TRUE)
  ind_best <- which(seq_lambda == best_lambda)
  
  best_fit <- glmnet(x = explanatory, y = Proj, alpha = coef_elastic,
                     lambda = seq_lambda, family="gaussian")
  alpha <- best_fit$beta[ ,ind_best]

  sEDR <- sweep(rEDR, 1, rep(alpha, inter_len), "*")
  
  # quality criteria TODO: see which ones to keep
  nobs <- fit$glmnet.fit$nobs
  loglik <- log(mean((predict(fit, explanatory, s=best_lambda) - Proj)^2))
  AIC <- nobs * loglik + 2 * sum(alpha != 0)
  BIC <- nobs * loglik + sum(alpha != 0) * log(nobs)
  nb_param <- sum(as.numeric(alpha != 0) * inter_len)
  AIC2 <- nobs * loglik + 2 * nb_param
  BIC2 <- nobs * loglik + nb_param * log(nobs)
  CVerror <- min(fit$cvm)
  quality <- c(loglik, AIC, BIC, AIC2, BIC2, CVerror)
  names(quality) <- c("loglik", "AIC", "BIC", "AIC2", "BIC2", "CVerror")
  
  if (adaptive) {# find hard/soft zeros
    ind_nonzero <- which.min(abs(best_fit$df - sel_prop*D))
    alpha_nonzero <- best_fit$beta[ ,ind_nonzero]
    ind_zero <- which.min(abs(best_fit$df - (1-sel_prop)*D))
    alpha_zero <- best_fit$beta[ ,ind_zero]
    adapt <- list("nonzeros" = alpha_nonzero, "zeros" = alpha_zero)
  } else adapt <- NULL
  
  parameters <- list("inter_len" = inter_len, "sel_prop" = sel_prop)

  res <- list("sEDR" = sEDR, "alpha" = unname(alpha), "quality" = quality, 
              "adapt_res" = adapt, "parameters" = parameters, "rSIR" = object,
              "fit" = list("glmnet" = best_fit, "lambda" = best_lambda,
                           "x" = explanatory))
  class(res) <- "sparseRes"
  
  options(warn = oldwarn)
  
  return(res)
}

################################################################################
# Methods for objects of class sparseRes
################################################################################
#' @title Print sparseRes object
#' @name sparseRes
#' @exportClass sparseRes
#' @export
#' @aliases summary.sparseRes
#' @aliases print.sparseRes
#' @aliases sparseRes-class
#' @description Print a summary of the result of \code{\link{sparseSIR}} (
#' \code{sparseRes} object)
#' @param object a \code{sparseRes} object
#' @param x a \code{sparseRes} object
#' @param ... not used
#' @author {Victor Picheny, \email{victor.picheny@inra.fr}
#' 
#' Remi Servien, \email{remi.servien@inra.fr}
#' 
#' Nathalie Villa-Vialaneix, \email{nathalie.villa-vialaneix@inra.fr}}
#' @seealso \code{\link{sparseSIR}}
#' 
summary.sparseRes <- function(object, ...) {
  cat("Sparse SIR results with:\n\n",
      object$rSIR$parameters$H, "slices\n",
      "dimension of the EDR space is:", object$rSIR$parameters$d, "\n",
      "regularization parameter is:", object$rSIR$parameters$mu2, "\n\n")
  cat(sum(object$alpha != 0), "non zero coefficient(s) out of", 
      length(object$alpha), "possible.\n")
  cat("Shrinkage coefficients are in $alpha.", min(c(length(object$alpha), 10)),
      "first coefficients are:\n")
  print(head(object$alpha, 10))
  cat("\nThe EDR space is in '$sEDR'. First 10 rows are:\n\n")
  print(head(object$sEDR, 10))
}

#' @export
#' @rdname sparseRes
print.sparseRes <- function(x, ...) {
  summary.sparseRes(x)
}

#' @title sparse SIR
#' @name project
#' @export
#' @aliases project.sparseRes
#'
#' @description
#' \code{project} performs the projection on the sparse EDR space (as obtained
#' by the \code{\link[glmnet]{glmnet}})
#'
#' @param object an object of class \code{sparseRes} as obtained from the 
#' function \code{\link{sparseSIR}}
#' 
#' @author {Victor Picheny, \email{victor.picheny@inra.fr}
#' 
#' Remi Servien, \email{remi.servien@inra.fr}
#' 
#' Nathalie Villa-Vialaneix, \email{nathalie.villa-vialaneix@inra.fr}}
#' 
#' @references {Picheny, V., Servien, R. and Villa-Vialaneix, N. (2016) 
#' Interpretable sparse SIR for digitized functional data. \emph{Preprint}.}
#' 
#' @seealso \code{\link{sparseSIR}}
#' 
#' @details The projection is obtained by the function 
#' \code{\link[glmnet]{predict.glmnet}}.
#' 
#' @examples
#' set.seed(1140)
#' tsteps <- seq(0, 1, length = 200)
#' nsim <- 100
#' simulate_bm <- function() return(c(0, cumsum(rnorm(length(tsteps)-1, sd=1))))
#' x <- t(replicate(nsim, simulate_bm()))
#' beta <- cbind(sin(tsteps*3*pi/2), sin(tsteps*5*pi/2))
#' beta[((tsteps < 0.2) || (tsteps > 0.5)), 1] <- 0
#' beta[((tsteps < 0.6) || (tsteps > 0.75)), 2] <- 0
#' y <- log(abs(x %*% beta[ ,1]) + 1) + sqrt(abs(x %*% beta[ ,2]))
#' y <- y + rnorm(nsim, sd = 0.1)
#' \dontrun{
#' res_ridge <- ridgeSIR(x, y, H = 10, d = 2)
#' res_sparse <- sparseSIR(res_ridge, rep(1, ncol(x)))
#' proj_data <- project(res_sparse)
#' }
#' 
#' @return a matrix of dimension n x d with the projection of the observations
#' on the d dimensions of the sparse EDR space
#' 
project.sparseRes <- function(object) {
  res <- predict.glmnet(object$fit$glmnet, object$fit$x, object$fit$lambda)
  res <- matrix(res, ncol = object$rSIR$parameters$d, byrow = FALSE)
  return(res)
}

#' @export
#' @rdname project
project <- function(object) {
  UseMethod("project")
}

################################################################################
# Iterative interval search
################################################################################
#' @title Interval Sparse SIR
#' @export
#'
#' @description
#' \code{SISIR} performs an automatic search of relevant intervals
#'
#' @param object an object of class \code{ridgeRes} as obtained from the 
#' function \code{\link{ridgeSIR}}
#' @param inter_len (numeric) vector with interval lengths for the initial 
#' state. Default is to set one interval for each variable (all intervals have
#' length 1)
#' @param sel_prop fraction of the coefficients that will be considered as 
#' strong zeros and strong non zeros. Default to 0.05
#' @param itermax maximum number of iterations. Default to Inf
#' @param minint minimum number of intervals. Default to 2
#' @param parallel whether the computation should be performed in parallel or
#' not. Logical. Default is FALSE
#' @param ncores number of cores to use if \code{parallel = TRUE}. If left to 
#' NULL, all available cores minus one are used
#' 
#' @author {Victor Picheny, \email{victor.picheny@inra.fr}
#' 
#' Remi Servien, \email{remi.servien@inra.fr}
#' 
#' Nathalie Villa-Vialaneix, \email{nathalie.villa-vialaneix@inra.fr}}
#' 
#' @references {Picheny, V., Servien, R. and Villa-Vialaneix, N. (2016) 
#' Interpretable sparse SIR for digitized functional data. \emph{Preprint}.}
#' 
#' @seealso \code{\link{ridgeSIR}}, \code{\link{sparseSIR}}
#' 
#' @examples
#' set.seed(1140)
#' tsteps <- seq(0, 1, length = 200)
#' nsim <- 100
#' simulate_bm <- function() return(c(0, cumsum(rnorm(length(tsteps)-1, sd=1))))
#' x <- t(replicate(nsim, simulate_bm()))
#' beta <- cbind(sin(tsteps*3*pi/2), sin(tsteps*5*pi/2))
#' beta[((tsteps < 0.2) || (tsteps > 0.5)), 1] <- 0
#' beta[((tsteps < 0.6) || (tsteps > 0.75)), 2] <- 0
#' y <- log(abs(x %*% beta[ ,1]) + 1) + sqrt(abs(x %*% beta[ ,2]))
#' y <- y + rnorm(nsim, sd = 0.1)
#' res_ridge <- ridgeSIR(x, y, H = 10, d = 2, mu2 = 10^8)
#' \dontrun{res_fused <- SISIR(res_ridge, rep(1, ncol(x)))}
#' 
#' @return S3 object of class \code{SISIR}: a list consisting of
#' \itemize{
#'    \item{\code{sEDR}}{ the estimated EDR spaces (a list of p x d matrices)}
#'    \item{\code{alpha}}{ the estimated shrinkage coefficients (a list of 
#'    vectors)}
#'    \item{\code{intervals}}{ the interval lengths (a list of vectors)}
#'    \item{\code{quality}}{ a data frame with various qualities for the model.
#'    The chosen quality measures are the same than for the function 
#'    \code{\link{sparseSIR}} plus the number of intervals \code{nbint}}
#'    \item{\code{init_sel_prop}}{ initial fraction of the coefficients which 
#'    are considered as strong zeros or strong non zeros}
#'    \item{\code{rSIR}}{ same as the input \code{object}}
#'  }
#'  
#'  @details Different quality criteria used to select the best models among a
#'  list of models with different interval definitions. Quality criteria are:
#'  log-likelihood (\code{loglik}), cross-validation error as provided by the
#'  function \code{\link[glmnet]{glmnet}}, two versions of the AIC (\code{AIC} 
#'  and \code{AIC2}) and of the BIC (\code{BIC} and \code{BIC2}) in which the 
#'  number of parameters is either the number of non null intervals or the 
#'  number of non null parameters with respect to the original variables
#'  
SISIR <- function(object, inter_len = rep(1, nrow(object$EDR)), sel_prop = 0.05,
                  itermax = Inf, minint = 2, parallel = TRUE, ncores = NULL) {
  
  init_sel_prop <- sel_prop
  
  nbiter <- 1
  loglik <- AIC <- BIC <- AIC2 <- BIC2 <- CVerror <- NULL
  sEDR <- list()
  alpha <- list()
  intervals <- list()
  intervals[[1]] <- inter_len
  while ((sel_prop < 0.49) & (nbiter < itermax) & length(inter_len) > minint) {
    sparse_res <- sparseSIR(object, inter_len, adaptive = TRUE, sel_prop,
                            parallel, ncores)
    
    # collect results
    CVerror <- c(CVerror, sparse_res$quality["CVerror"])
    AIC <- c(AIC, sparse_res$quality["AIC"])
    BIC <- c(BIC, sparse_res$quality["BIC"])
    AIC2 <- c(AIC2, sparse_res$quality["AIC2"])
    BIC2 <- c(BIC2, sparse_res$quality["BIC2"])
    loglik <- c(loglik, sparse_res$quality["loglik"])

    sEDR[[nbiter]] <- sparse_res$sEDR
    alpha[[nbiter]] <- sparse_res$alpha
    
    ## merge intervals (sequential from left to right)
    liste_strong0 <- which(sparse_res$adapt_res$nonzeros != 0)
    liste_strongnot0 <- which(sparse_res$adapt_res$zeros == 0)
    df_merge <- data.frame("int" = c(liste_strong0, liste_strongnot0),
                           "type" = c(rep("yes", length(liste_strong0)),
                                      rep("no", length(liste_strongnot0))))
    df_merge <- df_merge[order(df_merge$int), ]
    nb_tests <- nrow(df_merge)
    
    # merging at left border
    if (df_merge$int[1] > 1) {
      leftbd <- sum(inter_len[1:(df_merge$int[1] - 1)])
      if (leftbd < inter_len[df_merge$int[1]]) {
        inter_len[df_merge$int[1]] <- inter_len[df_merge$int[1]] + leftbd
        inter_len[1:(df_merge$int[1] - 1)] <- 0
      }
    }
    
    # merge between intervals of same types
    if (nb_tests > 1) {
      may_merge <- df_merge$type[1:(nb_tests-1)] == df_merge$type[2:nb_tests]
    } else may_merge <- FALSE
    if (sum(may_merge) > 0) {
      # merge if two intervals are consecutive
      merge1 <- (df_merge$int[1:(nb_tests-1)] + 1) == df_merge$int[2:nb_tests]
      # merge if around length is larger than between length
      around_len <- inter_len[df_merge$int[1:(nb_tests-1)]] +
        inter_len[df_merge$int[2:nb_tests]]
      between_len <- sapply(1:(nb_tests-1), function(pos) {
        sum(inter_len[(df_merge$int[pos] + 1):(df_merge$int[pos+1] - 1)])
      })
      merge2 <- around_len > between_len
      # conclusion and merge
      merge <- which(may_merge & (merge1 | merge2))
      
      # sequential merge (from left to right)
      for (pos in merge) {
        m_length <- sum(inter_len[df_merge$int[pos]:df_merge$int[pos + 1]])
        inter_len[df_merge$int[pos + 1]] <- m_length
       inter_len[df_merge$int[pos]:(df_merge$int[pos + 1] - 1)] <- 0
      }
    }
    
    # right border
    if (df_merge$int[nb_tests] < length(inter_len)) {
      rightbd <- sum(inter_len[(df_merge$int[nb_tests] + 1):length(inter_len)])
      if (rightbd < inter_len[df_merge$int[nb_tests]]) {
        inter_len[df_merge$int[nb_tests]] <- inter_len[df_merge$int[nb_tests]] +
          rightbd
        inter_len[(df_merge$int[nb_tests] + 1):length(inter_len)] <- 0
      }
    }
    
    # final intervals
    inter_len <- inter_len[inter_len != 0]
    intervals[[nbiter + 1]] <- inter_len
    cat("Current number of intervals...", length(inter_len), "\n")
    
    if (length(intervals[[nbiter + 1]]) == length(intervals[[nbiter]])) 
      sel_prop <- sel_prop + 0.01

    nbiter <- nbiter + 1
  }
  
  intervals[[nbiter]] <- NULL
  quality <- data.frame("loglik" = loglik, "AIC" = AIC, "AIC2" = AIC2, 
                        "BIC" = BIC, "BIC2" = BIC2, "CVerror" = CVerror,
                        "nbint" = unlist(lapply(intervals, length)))
  res <- list("sEDR" = sEDR, "alpha" = alpha, "intervals" = intervals,
              "quality" = quality, "init_sel_prop" = init_sel_prop, 
              "rSIR" = object)
  class(res) <- "SISIRres"
  return(res)
}

################################################################################
# Methods for objects of class SISIRres
################################################################################
#' @title Print SISIRres object
#' @name SISIRres
#' @exportClass SISIRres
#' @export
#' @aliases summary.SISIRres
#' @aliases print.SISIRres
#' @description Print a summary of the result of \code{\link{SISIRres}} (
#' \code{SISIRres} object)
#' @param object a \code{SISIRres} object
#' @param x a \code{SISIRres} object
#' @param ... not used
#' @author {Victor Picheny, \email{victor.picheny@inra.fr}
#' 
#' Remi Servien, \email{remi.servien@inra.fr}
#' 
#' Nathalie Villa-Vialaneix, \email{nathalie.villa-vialaneix@inra.fr}}
#' @seealso \code{\link{SISIR}}
#' 
summary.SISIRres <- function(object, ...) {
  cat("Interval Sparse SIR results with:\n\n",
      object$rSIR$parameters$H, "slices\n",
      "dimension of the EDR space is:", object$rSIR$parameters$d, "\n",
      "regularization parameter is:", object$rSIR$parameters$mu2, "\n\n")
  cat("Number of fitted models:", length(object$sEDR), "\n\n")
}

#' @export
#' @rdname SISIRres
print.SISIRres <- function(x, ...) {
  summary.SISIRres(x)
}