Commit 551c860b authored by Renne Thomas's avatar Renne Thomas
Browse files

Add timsTOF parameter analysis script

parent bbf4cc5e
---
title: "timsTOF parameters analysis"
author: "Thomas Renne"
date: "27/04/2020"
output: pdf_document
---
```{r setup, include=FALSE}
setwd("~/Documents/params_timsTOF")
library(ggplot2)
library(reshape2)
library(wesanderson)
library(gridExtra)
data = read.csv("param_tims.csv")
```
# Resolution
```{r include=FALSE}
data.reso = subset(data, Changed.parameter == "resolution")
names(data.reso)[2] <- "reso"
plot.reso.unique <- function(y.val, y.lab, title){
ggplot(data.reso, aes(x=reso, y=y.val)) +
geom_point(size=2, color="darkcyan") +
labs(x="resolution", y=y.lab) +
ggtitle(paste(title, "following the resolution parameter"))+
theme_grey()
}
plot.reso.multiple <- function(data, y.lab, legend.title, legend.labels, title){
dm = melt(data, id.var=1)
ggplot(dm, aes(x=reso, y=value, color=variable)) +
geom_point(size=2) +
labs(x="resolution", y=y.lab) +
scale_color_manual(name=legend.title,
labels=legend.labels,
values=wes_palette(name="Darjeeling1")) +
ggtitle(paste(title, "following the resolution parameter"))+
theme_grey()
}
```
## Information
- **Number of threads** : 5
- **Resolution** : 10 000, 20 000, 30 000, 40 000, 50 000
- **Smooth width** : 2.0
- **Integration width** : 4
- **Intensity threshold** : 10.0
## Graphs
```{r graphs, echo=FALSE}
########### Time ###########
plot.reso.unique(data.reso$time, "time (min)", "Execution time")
########### groups ###########
plot.reso.unique(data.reso$nb_groups, "number of groups", "Number of groups")
########### subgroups ###########
plot.reso.unique(data.reso$nb_subgroups, "number of subgroups", "Number of subgroups")
########### proteins ###########
plot.reso.unique(data.reso$nb_proteins, "number of proteins", "Number of proteins")
########### peptides ###########
plot.reso.unique(data.reso$nb_peptides, "number of peptides", "Number of peptides")
########### fdr ###########
plot.reso.multiple(data.reso[, c(2, 8:10)], "% of FDR", "FDRs", c("PSM", "Peptides", "Proteins"), "Different FDRs")
########### mass precision ###########
plot.reso.multiple(abs(data.reso[, c(2, 11:13)]), "mass precision", "Statistical description", c("abs(mean)", "abs(median)", "sd"), "Mass-precision description")
########### Total spectra used ###########
plot.reso.unique(data.reso$total_spectra_used, "Number of spectra used", "Total spectra used")
########### Total assigned ###########
plot.reso.multiple(data.reso[, c(2, 15:16)], "number", "total assigned", c("total spectra assigned", "total unique assigned"), "Total of spectra and unique assigned")
########### Percent assigned ###########
plot.reso.unique(data.reso$percent_assignement, "assignment in %", "Percentage of assignment")
```
# Smooth width
```{r include=FALSE}
data.smooth = subset(data, Changed.parameter == "smooth_width")
names(data.smooth)[2] <- "smooth"
plot.smooth.unique <- function(data, y.val, y.lab, title){
ggplot(data, aes(x=smooth, y=y.val)) +
geom_point(size=2, color="darkcyan") +
labs(x="smooth width", y=y.lab) +
ggtitle(paste(title, "following the smooth-width parameter"))+
theme_grey()
}
plot.smooth.multiple <- function(data, y.lab, legend.title, legend.labels, title){
dm = melt(data, id.var=1)
ggplot(dm, aes(x=smooth, y=value, color=variable)) +
geom_point(size=2) +
labs(x="smooth width", y=y.lab) +
scale_color_manual(name=legend.title,
labels=legend.labels,
values=wes_palette(name="Darjeeling1")) +
ggtitle(paste(title, "following the smooth-width parameter"))+
theme_grey()
}
```
## Information
- **Number of threads** : 5
- **Resolution** : 40 000
- **Smooth width** : 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 10, 20, 50, 100, 200, 500
- **Integration width** : 4
- **Intensity threshold** : 10.0
## Graphs
```{r graphs_smooth, echo=FALSE}
########### Time ###########
plot.smooth.unique(data.smooth, data.smooth$time, "time (min)", "Execution time")
########### groups ###########
plot.smooth.unique(data.smooth, data.smooth$nb_groups, "number of groups", "Number of groups")
########### subgroups ###########
plot.smooth.unique(data.smooth, data.smooth$nb_subgroups, "number of subgroups", "Number of subgroups")
########### proteins ###########
plot.smooth.unique(data.smooth, data.smooth$nb_proteins, "number of proteins", "Number of proteins")
########### peptides ###########
plot.smooth.unique(data.smooth, data.smooth$nb_peptides, "number of peptides", "Number of peptides")
########### fdr ###########
plot.smooth.multiple(data.smooth[, c(2, 8:10)], "% of FDR", "FDRs", c("PSM", "Peptides", "Proteins"), "Different FDRs")
########### mass precision ###########
plot.smooth.multiple(abs(data.smooth[, c(2, 11:13)]), "mass precision", "Statistical description", c("abs(mean)", "sd", "abs(median)"), "Mass-precision description")
########### Total spectra used ###########
plot.smooth.unique(data.smooth, data.smooth$total_spectra_used, "Number of spectra used", "Total spectra used")
########### Total assigned ###########
plot.smooth.multiple(data.smooth[, c(2, 15:16)], "number", "total assigned", c("total spectra assigned", "total unique assigned"), "Total of spectra and unique assigned")
########### Percent assigned ###########
plot.smooth.unique(data.smooth, data.smooth$percent_assignement, "assignment in %", "Percentage of assignment")
```
## Focused analysis smooth-width [1:50]
```{r graphs_smooth_focused, echo=FALSE}
data.smooth_f = data.smooth[1:10,]
########### Time ###########
plot.smooth.unique(data.smooth_f, data.smooth_f$time, "time (min)", "Execution time")
########### groups ###########
plot.smooth.unique(data.smooth_f, data.smooth_f$nb_groups, "number of groups", "Number of groups")
########### subgroups ###########
plot.smooth.unique(data.smooth_f, data.smooth_f$nb_subgroups, "number of subgroups", "Number of subgroups")
########### proteins ###########
plot.smooth.unique(data.smooth_f, data.smooth_f$nb_proteins, "number of proteins", "Number of proteins")
########### peptides ###########
plot.smooth.unique(data.smooth_f, data.smooth_f$nb_peptides, "number of peptides", "Number of peptides")
########### fdr ###########
plot.smooth.multiple(data.smooth_f[, c(2, 8:10)], "% of FDR", "FDRs", c("PSM", "Peptides", "Proteins"), "Different FDRs")
########### mass precision ###########
plot.smooth.multiple(abs(data.smooth_f[, c(2, 11:13)]), "mass precision", "Statistical description", c("abs(mean)", "sd", "abs(median)"), "Mass-precision description")
########### Total spectra used ###########
plot.smooth.unique(data.smooth_f, data.smooth_f$total_spectra_used, "Number of spectra used", "Total spectra used")
########### Total assigned ###########
plot.smooth.multiple(data.smooth_f[, c(2, 15:16)], "number", "total assigned", c("total spectra assigned", "total unique assigned"), "Total of spectra and unique assigned")
########### Percent assigned ###########
plot.smooth.unique(data.smooth_f, data.smooth_f$percent_assignement, "assignment in %", "Percentage of assignment")
```
\ No newline at end of file
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment