Skip to content
Snippets Groups Projects
Commit 551c860b authored by Renne Thomas's avatar Renne Thomas
Browse files

Add timsTOF parameter analysis script

parent bbf4cc5e
No related branches found
No related tags found
1 merge request!22Willy's issues
---
title: "timsTOF parameters analysis"
author: "Thomas Renne"
date: "27/04/2020"
output: pdf_document
---
```{r setup, include=FALSE}
setwd("~/Documents/params_timsTOF")
library(ggplot2)
library(reshape2)
library(wesanderson)
library(gridExtra)
data = read.csv("param_tims.csv")
```
# Resolution
```{r include=FALSE}
data.reso = subset(data, Changed.parameter == "resolution")
names(data.reso)[2] <- "reso"
plot.reso.unique <- function(y.val, y.lab, title){
ggplot(data.reso, aes(x=reso, y=y.val)) +
geom_point(size=2, color="darkcyan") +
labs(x="resolution", y=y.lab) +
ggtitle(paste(title, "following the resolution parameter"))+
theme_grey()
}
plot.reso.multiple <- function(data, y.lab, legend.title, legend.labels, title){
dm = melt(data, id.var=1)
ggplot(dm, aes(x=reso, y=value, color=variable)) +
geom_point(size=2) +
labs(x="resolution", y=y.lab) +
scale_color_manual(name=legend.title,
labels=legend.labels,
values=wes_palette(name="Darjeeling1")) +
ggtitle(paste(title, "following the resolution parameter"))+
theme_grey()
}
```
## Information
- **Number of threads** : 5
- **Resolution** : 10 000, 20 000, 30 000, 40 000, 50 000
- **Smooth width** : 2.0
- **Integration width** : 4
- **Intensity threshold** : 10.0
## Graphs
```{r graphs, echo=FALSE}
########### Time ###########
plot.reso.unique(data.reso$time, "time (min)", "Execution time")
########### groups ###########
plot.reso.unique(data.reso$nb_groups, "number of groups", "Number of groups")
########### subgroups ###########
plot.reso.unique(data.reso$nb_subgroups, "number of subgroups", "Number of subgroups")
########### proteins ###########
plot.reso.unique(data.reso$nb_proteins, "number of proteins", "Number of proteins")
########### peptides ###########
plot.reso.unique(data.reso$nb_peptides, "number of peptides", "Number of peptides")
########### fdr ###########
plot.reso.multiple(data.reso[, c(2, 8:10)], "% of FDR", "FDRs", c("PSM", "Peptides", "Proteins"), "Different FDRs")
########### mass precision ###########
plot.reso.multiple(abs(data.reso[, c(2, 11:13)]), "mass precision", "Statistical description", c("abs(mean)", "abs(median)", "sd"), "Mass-precision description")
########### Total spectra used ###########
plot.reso.unique(data.reso$total_spectra_used, "Number of spectra used", "Total spectra used")
########### Total assigned ###########
plot.reso.multiple(data.reso[, c(2, 15:16)], "number", "total assigned", c("total spectra assigned", "total unique assigned"), "Total of spectra and unique assigned")
########### Percent assigned ###########
plot.reso.unique(data.reso$percent_assignement, "assignment in %", "Percentage of assignment")
```
# Smooth width
```{r include=FALSE}
data.smooth = subset(data, Changed.parameter == "smooth_width")
names(data.smooth)[2] <- "smooth"
plot.smooth.unique <- function(data, y.val, y.lab, title){
ggplot(data, aes(x=smooth, y=y.val)) +
geom_point(size=2, color="darkcyan") +
labs(x="smooth width", y=y.lab) +
ggtitle(paste(title, "following the smooth-width parameter"))+
theme_grey()
}
plot.smooth.multiple <- function(data, y.lab, legend.title, legend.labels, title){
dm = melt(data, id.var=1)
ggplot(dm, aes(x=smooth, y=value, color=variable)) +
geom_point(size=2) +
labs(x="smooth width", y=y.lab) +
scale_color_manual(name=legend.title,
labels=legend.labels,
values=wes_palette(name="Darjeeling1")) +
ggtitle(paste(title, "following the smooth-width parameter"))+
theme_grey()
}
```
## Information
- **Number of threads** : 5
- **Resolution** : 40 000
- **Smooth width** : 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 10, 20, 50, 100, 200, 500
- **Integration width** : 4
- **Intensity threshold** : 10.0
## Graphs
```{r graphs_smooth, echo=FALSE}
########### Time ###########
plot.smooth.unique(data.smooth, data.smooth$time, "time (min)", "Execution time")
########### groups ###########
plot.smooth.unique(data.smooth, data.smooth$nb_groups, "number of groups", "Number of groups")
########### subgroups ###########
plot.smooth.unique(data.smooth, data.smooth$nb_subgroups, "number of subgroups", "Number of subgroups")
########### proteins ###########
plot.smooth.unique(data.smooth, data.smooth$nb_proteins, "number of proteins", "Number of proteins")
########### peptides ###########
plot.smooth.unique(data.smooth, data.smooth$nb_peptides, "number of peptides", "Number of peptides")
########### fdr ###########
plot.smooth.multiple(data.smooth[, c(2, 8:10)], "% of FDR", "FDRs", c("PSM", "Peptides", "Proteins"), "Different FDRs")
########### mass precision ###########
plot.smooth.multiple(abs(data.smooth[, c(2, 11:13)]), "mass precision", "Statistical description", c("abs(mean)", "sd", "abs(median)"), "Mass-precision description")
########### Total spectra used ###########
plot.smooth.unique(data.smooth, data.smooth$total_spectra_used, "Number of spectra used", "Total spectra used")
########### Total assigned ###########
plot.smooth.multiple(data.smooth[, c(2, 15:16)], "number", "total assigned", c("total spectra assigned", "total unique assigned"), "Total of spectra and unique assigned")
########### Percent assigned ###########
plot.smooth.unique(data.smooth, data.smooth$percent_assignement, "assignment in %", "Percentage of assignment")
```
## Focused analysis smooth-width [1:50]
```{r graphs_smooth_focused, echo=FALSE}
data.smooth_f = data.smooth[1:10,]
########### Time ###########
plot.smooth.unique(data.smooth_f, data.smooth_f$time, "time (min)", "Execution time")
########### groups ###########
plot.smooth.unique(data.smooth_f, data.smooth_f$nb_groups, "number of groups", "Number of groups")
########### subgroups ###########
plot.smooth.unique(data.smooth_f, data.smooth_f$nb_subgroups, "number of subgroups", "Number of subgroups")
########### proteins ###########
plot.smooth.unique(data.smooth_f, data.smooth_f$nb_proteins, "number of proteins", "Number of proteins")
########### peptides ###########
plot.smooth.unique(data.smooth_f, data.smooth_f$nb_peptides, "number of peptides", "Number of peptides")
########### fdr ###########
plot.smooth.multiple(data.smooth_f[, c(2, 8:10)], "% of FDR", "FDRs", c("PSM", "Peptides", "Proteins"), "Different FDRs")
########### mass precision ###########
plot.smooth.multiple(abs(data.smooth_f[, c(2, 11:13)]), "mass precision", "Statistical description", c("abs(mean)", "sd", "abs(median)"), "Mass-precision description")
########### Total spectra used ###########
plot.smooth.unique(data.smooth_f, data.smooth_f$total_spectra_used, "Number of spectra used", "Total spectra used")
########### Total assigned ###########
plot.smooth.multiple(data.smooth_f[, c(2, 15:16)], "number", "total assigned", c("total spectra assigned", "total unique assigned"), "Total of spectra and unique assigned")
########### Percent assigned ###########
plot.smooth.unique(data.smooth_f, data.smooth_f$percent_assignement, "assignment in %", "Percentage of assignment")
```
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment