Skip to content
Snippets Groups Projects
Commit 84ddbb62 authored by UMEC Mathieu's avatar UMEC Mathieu
Browse files

cleaning branches

parent 295d8e8b
No related branches found
No related tags found
No related merge requests found
......@@ -12,7 +12,7 @@ from scipy.stats import hypergeom
from utils import excel_file_writer, pre_cut, recup_all_inf_excel, cor_index
FOLDER = "C:\\Users\\mumec\\Desktop\\Mini_codes\\mapping_using_the_api\\"
import certifi
import urlopen
def send_request_to_mapping_api(url, data_json, head, met='POST'):
......@@ -27,50 +27,17 @@ def send_request_to_mapping_api(url, data_json, head, met='POST'):
Returns:
Type of return: 1 excel file whith 5 columns
req = request.Request(url, data=data_json, headers=head, method=met)
with request.urlopen(req) as response:
result = response.read()
out_data = result.decode('utf-8')
return out_data
"""
print()
context = ssl.create_default_context(cafile=certifi.where())
r = requests.post(url, data_json, headers=head, verify=certifi.where())
print(type(r))
return r
"""
def send_request_to_mapping_api(url, data_json, head, met='POST'):
This function gives the result of mapping of a metabolites list from RAMP.
Here's an example of 4 metabolites giving 505 lines.
["KEGG:C01157","hmdb:HMDB0000064","hmdb:HMDB0000148","chebi:16015"]
Arg:
url = the url to use
data_json = the data to post
head = headers to use
met = 'POST'
Returns:
Type of return: 1 excel file with 5 columns
try:
req = request.Request(url, data=data_json, headers=head, method=met, verify=certifi.where())
try :
req = request.Request(url, data=data_json, headers=head, method=met)
with request.urlopen(req) as response:
result = response.read()
out_data = result.decode('utf-8')
return out_data
except error.HTTPError as e:
print(f"Error: The server couldn't fulfill the request. {e}")
return []
except Exception as e:
print(f"An unexpected error occurred: {e}")
return []
"""
except error.URLError as e:
r = requests.post(url, data=data_json, headers=head, verify=False)
return r.text
return out_data
def mapping_ramp_api(metabolites_list, outfile, inf="flow"):
"""
......@@ -767,8 +734,7 @@ def opti_multimapping(file, outfolder, mapping="flow"):
cpdbf = outfolder+recap[i_map_opt][0]+"_mapping_opti.xlsx"
datas_cpdb = m_ora_cpdb(cpdb_o_opti, acctype, infos="flow",
ofile=cpdbf, cor_inf=[name_opti, cpdb_o_opti])
#Probléme RAMP voir aprés
print("CEST AU TOUR DE RAMP")
for line in inf[1:]:
to_test.append(line[1])
l_opt_ramp = []
......@@ -814,8 +780,6 @@ def opti_multimapping(file, outfolder, mapping="flow"):
print("lines Ramp", n_map)
l_opt_ramp_tri[0] = "RAMP"
recap.append(l_opt_ramp_tri)
datas_ramp = ["NA" for i in range(len(file)+1) ] # provisoire aussi !!!!
recap.append(modulation)
df_recap = pd.DataFrame(data=recap).transpose()
n_out_f = outfolder+"recap_multimapping.xlsx"
......
......@@ -9,8 +9,7 @@ import pandas as pd
import py4cytoscape as p4c
sys.path.append('C:\\Users\\mumec\\Desktop\\Dossier_gitlab_local\\traitement_des_données')
sys.path.append('C:\\Users\\mumec\\Desktop\\Dossier_gitlab_local\\chebi-ids.git')
sys.path.append("C:\\Users\\mumec\\Desktop\\Mini_codes\\pdf_PyPDF2")
from test_pdf import out_pdf_mapping
from pdf_generation_toolbox import out_pdf_mapping
from Recovery_of_associated_Chebi_IDs import chebi_horizontal
from utils import excel_file_writer, pre_cut, recup_all_inf_excel
from complete_processing_of_mapping_results import c_p_o_m_r
......@@ -125,13 +124,12 @@ def workflow(infile, out_folder):
result_cpdb, result_ramp, recap = opti_multimapping(datas_f_map, out_folder,
mapping="flow")
# ajouter la mention ID exact !
#l_visu = c_p_o_m_r(result_ramp, out_folder, "RAMP", f_view_sav=out_folder,
# modul="flow", f_modul=recap)
l_visu = c_p_o_m_r(result_ramp, out_folder, "RAMP", f_view_sav=out_folder,
modul="flow", f_modul=recap)
l_visu_c = c_p_o_m_r(result_cpdb, out_folder, "CPDB", f_view_sav=out_folder,
modul="flow", f_modul=recap)
#l_visu += l_visu_c[1:]
#l_visu.append(l_visu_c[0])
l_visu = l_visu_c # provisooire aussi !
l_visu += l_visu_c[1:]
l_visu.append(l_visu_c[0])
result_ramp_pdf = []
result_cpdb_pdf = []
recap_pdf = []
......@@ -144,9 +142,9 @@ def workflow(infile, out_folder):
new_line.append(str(i_line[i_col]))
liste_reverse[i_liste].append(new_line)
file_path = "Modele_de_pdf_feneratio_en_anglais_rev_19-02-2024.docx"
#out_pdf_mapping(file_path, data_input, chebi_hori, recap_pdf,
# result_ramp_pdf[:8], result_cpdb_pdf[:4],
# out_folder, l_visu)
out_pdf_mapping(file_path, data_input, chebi_hori, recap_pdf,
result_ramp_pdf[:8], result_cpdb_pdf[:4],
out_folder, l_visu)
l_bdd = ["Wikipathways", "KEGG", "EHMN",
"HumanCyc", "INOH", "Reactome"] # "SMPDB" plantage
t2 = time()
......@@ -155,23 +153,18 @@ def workflow(infile, out_folder):
for bddnow in l_bdd:
t_i_name = [recap[0] + recap[0], recap[1] + recap[2]] #not opti
print(t_i_name)
#out_links = out_folder + "CPDB_links_network" + bddnow + "datas_base.xlsx"
out_links = out_folder + "Network CPDB with only "+ bddnow + " pathways.xlsx"
edge_data, nodes_data = paths_link_cpdb(result_cpdb, out_links, recap,
bdd=bddnow, flow=True,
tab_id_name=t_i_name)
"""
if bddnow == "Reactome":
print(network_visu(edge_data[0:3], nodes_data,
bdd=bddnow, sav_fol=out_folder))
else:
print(network_visu(edge_data[0:3], nodes_data, bdd=bddnow))
"""
t3 = time()
"""
print("le temps nécessaires pour effectuer les visualisation a était de ",
t3-t1, "secondes.")
"""
print("le temps total pour faire tourner le programme est a était ",
t3-t1, "secondes.")
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment