Skip to content
Snippets Groups Projects
Commit 5f86a374 authored by UMEC Mathieu's avatar UMEC Mathieu
Browse files

fixing code

parent 7baf853b
No related branches found
No related tags found
No related merge requests found
...@@ -68,7 +68,6 @@ def recup_CPDB_pathways_list(CPDB_mapping_result,correspondence_file): ...@@ -68,7 +68,6 @@ def recup_CPDB_pathways_list(CPDB_mapping_result,correspondence_file):
L_Pathways=L_Pathways[1:] L_Pathways=L_Pathways[1:]
L_pathways_metabolites_whith_top=column_recovery(CPDB_mapping_result, 5) L_pathways_metabolites_whith_top=column_recovery(CPDB_mapping_result, 5)
L_pathways_metabolites=L_pathways_metabolites_whith_top[1:] L_pathways_metabolites=L_pathways_metabolites_whith_top[1:]
print(L_pathways_metabolites)
Chebi_aso_clean=strip_list(associated_chebi) Chebi_aso_clean=strip_list(associated_chebi)
L_to_return=[] L_to_return=[]
""" """
...@@ -206,13 +205,16 @@ def similarity_matrix(list_of_pathways): ...@@ -206,13 +205,16 @@ def similarity_matrix(list_of_pathways):
return(np_table,just_one_interest_metabo_pathways, return(np_table,just_one_interest_metabo_pathways,
Metabolite_just_one_interest_metabo_pathways, All_metabo, f_of_metabolite, pathways_of_metabo,Names_of_pathways, all_recovery, average_recov) Metabolite_just_one_interest_metabo_pathways, All_metabo, f_of_metabolite, pathways_of_metabo,Names_of_pathways, all_recovery, average_recov)
def list_frequency_1(frequency_of_metabolite,All_metabolites,pathways_of_metabolites) : def list_frequency_1(frequency_of_metabolite,All_metabolites,pathways_of_metabolites,list_of_pathways_name,list_of_pathways_list) :
metabolites_f1=[] metabolites_f1=[]
pathway_metabolites_f1=[] pathway_metabolites_f1=[]
for frequency_number in range (len(frequency_of_metabolite)) : for frequency_number in range (len(frequency_of_metabolite)) :
if frequency_of_metabolite[frequency_number]==1 : if frequency_of_metabolite[frequency_number]==1 :
metabolites_f1.append(All_metabolites[frequency_number]) metabolites_f1.append(All_metabolites[frequency_number])
pathway_metabolites_f1.append(pathways_of_metabolites[frequency_number][0]) pat=pathways_of_metabolites[frequency_number][0]
pos_path=list_of_pathways_name.index(pat)
number_of_metabolites_of_this_pathways=len(list_of_pathways_list[pos_path])-1
pathway_metabolites_f1.append(pat+'('+str(number_of_metabolites_of_this_pathways)+')')
return(metabolites_f1,pathway_metabolites_f1) return(metabolites_f1,pathway_metabolites_f1)
def pathways_of_metabolite(metabolites_list,pathways_of_metabolites) : def pathways_of_metabolite(metabolites_list,pathways_of_metabolites) :
...@@ -223,10 +225,18 @@ def pathways_of_metabolite(metabolites_list,pathways_of_metabolites) : ...@@ -223,10 +225,18 @@ def pathways_of_metabolite(metabolites_list,pathways_of_metabolites) :
return(p_of_meta) return(p_of_meta)
def order_frequency(unique_metabo_pathways, Metabolite_unique_metabo_pathways, pathway_metabo_f1, metabo_f1, All_metabo, frequency_of_metabolite) : def order_frequency(unique_metabo_pathways, Metabolite_unique_metabo_pathways, pathway_metabo_f1, metabo_f1, All_metabo, frequency_of_metabolite) :
frequency_of_metabolites_order=[] frequency_metabolite=[]
for index_mf in range (len(All_metabo)):
frequency_metabolite.append([frequency_of_metabolite[index_mf],All_metabo[index_mf]])
f_metabo=frequency_metabolite[1:]
f_metabo.sort(reverse=True)
for index_fm in range (1, len(All_metabo)):
All_metabo[index_fm]=f_metabo[index_fm-1][1]
frequency_of_metabolite[index_fm]=f_metabo[index_fm-1][0]
infos_for_shapping=[[len(unique_metabo_pathways),unique_metabo_pathways,Metabolite_unique_metabo_pathways],[len(pathway_metabo_f1),metabo_f1, pathway_metabo_f1],[len(All_metabo),All_metabo,frequency_of_metabolite]] infos_for_shapping=[[len(unique_metabo_pathways),unique_metabo_pathways,Metabolite_unique_metabo_pathways],[len(pathway_metabo_f1),metabo_f1, pathway_metabo_f1],[len(All_metabo),All_metabo,frequency_of_metabolite]]
infos_for_shapping.sort() infos_for_shapping.sort()
counter=0 counter=0
frequency_of_metabolites_order=[]
while counter<infos_for_shapping[2][0]: while counter<infos_for_shapping[2][0]:
if counter>=infos_for_shapping[1][0]: if counter>=infos_for_shapping[1][0]:
shape_ok=[infos_for_shapping[2][1][counter],infos_for_shapping[2][2][counter],"","","",""] shape_ok=[infos_for_shapping[2][1][counter],infos_for_shapping[2][2][counter],"","","",""]
...@@ -283,7 +293,6 @@ def complete_processing_of_mapping_results (file,outf, mapper,sep=";",type_of_vi ...@@ -283,7 +293,6 @@ def complete_processing_of_mapping_results (file,outf, mapper,sep=";",type_of_vi
""" """
if mapper=="CPDB" : if mapper=="CPDB" :
c_file=input('In which file is the correspondence table between ID and current name located? (Current names must be in the first column and ID in the second)') c_file=input('In which file is the correspondence table between ID and current name located? (Current names must be in the first column and ID in the second)')
print(c_file)
L_of_pathways_list=recup_CPDB_pathways_list(file,c_file) L_of_pathways_list=recup_CPDB_pathways_list(file,c_file)
elif mapper=="RAMP": #Resultas_Ramp elif mapper=="RAMP": #Resultas_Ramp
c_file=input('In which file is the correspondence table between ID and current name located? (Current names must be in the first column and ID in the second)') c_file=input('In which file is the correspondence table between ID and current name located? (Current names must be in the first column and ID in the second)')
...@@ -310,7 +319,7 @@ def complete_processing_of_mapping_results (file,outf, mapper,sep=";",type_of_vi ...@@ -310,7 +319,7 @@ def complete_processing_of_mapping_results (file,outf, mapper,sep=";",type_of_vi
approximate_table, only_one_interest_metabolite_pathways, Metabolite_only_one_interest_metabolite_pathways, All_metabolites, metabolite_frequency, pathways_of_metabo, pathways_Names ,totale_recovery,average_recovery=similarity_matrix(L_of_pathways_list_to_treat) approximate_table, only_one_interest_metabolite_pathways, Metabolite_only_one_interest_metabolite_pathways, All_metabolites, metabolite_frequency, pathways_of_metabo, pathways_Names ,totale_recovery,average_recovery=similarity_matrix(L_of_pathways_list_to_treat)
metabolites_f_equal_1,pathway_metabolites_f_equal_1=list_frequency_1(metabolite_frequency,All_metabolites,pathways_of_metabo) metabolites_f_equal_1,pathway_metabolites_f_equal_1=list_frequency_1(metabolite_frequency,All_metabolites,pathways_of_metabo,pathways_Names, L_of_pathways_list_to_treat)
Metabolites_and_pathways=pathways_of_metabolite(All_metabolites,pathways_of_metabo) Metabolites_and_pathways=pathways_of_metabolite(All_metabolites,pathways_of_metabo)
All_metabolites.insert(0,"Ensemble des métabolites") All_metabolites.insert(0,"Ensemble des métabolites")
...@@ -327,10 +336,9 @@ def complete_processing_of_mapping_results (file,outf, mapper,sep=";",type_of_vi ...@@ -327,10 +336,9 @@ def complete_processing_of_mapping_results (file,outf, mapper,sep=";",type_of_vi
patways_recovery_order=recovery_position_and_pathways_name(totale_recovery,average_recovery,pathways_Names) patways_recovery_order=recovery_position_and_pathways_name(totale_recovery,average_recovery,pathways_Names)
patways_recovery_order_for_export = pd.DataFrame(data=patways_recovery_order) patways_recovery_order_for_export = pd.DataFrame(data=patways_recovery_order)
df_matrix_table= df_matrix_r (approximate_table) df_matrix_table= df_matrix_r (approximate_table)
"""
excel_multi_file_writer([patways_recovery_order_for_export, df_matrix_table,metabolite_frequency_order_for_export, Metabolites_and_pathways], outf, ["Noms_tables de ressemblance","Table de ressemblance","Fréquence des métabolites","Métabolites et leurs P"]) excel_multi_file_writer([patways_recovery_order_for_export, df_matrix_table,metabolite_frequency_order_for_export, Metabolites_and_pathways], outf, ["Noms_tables de ressemblance","Table de ressemblance","Fréquence des métabolites","Métabolites et leurs P"])
"""
### fonction 7 et 8 les visualisation + possibiliter de sauvegarder les visus
data_for_recovery_visualization = pd.DataFrame(data=patways_recovery_order[1:]) data_for_recovery_visualization = pd.DataFrame(data=patways_recovery_order[1:])
colnames_recovery = list(data_for_recovery_visualization.columns) colnames_recovery = list(data_for_recovery_visualization.columns)
...@@ -341,17 +349,14 @@ def complete_processing_of_mapping_results (file,outf, mapper,sep=";",type_of_vi ...@@ -341,17 +349,14 @@ def complete_processing_of_mapping_results (file,outf, mapper,sep=";",type_of_vi
plt.savefig(folder_of_saving+"bar_plot_of_recovery.png") plt.savefig(folder_of_saving+"bar_plot_of_recovery.png")
plt.show() plt.show()
"""
the little part of the code under this lines wille no longer be usseful when the issu whith the return of frequency in ordre will be resolved.
It's why it's not in function
"""
just_frequency=[] just_frequency=[]
for count_index in range (len(metabolite_frequency_order)-1): pos_all_meta=metabolite_frequency_order[0].index('Ensemble des métabolites')
just_frequency.append([metabolite_frequency_order[1:][count_index][1],metabolite_frequency_order[1:][count_index][0]]) count_index=0
just_frequency.sort(reverse=True) while count_index<len(metabolite_frequency_order)-1 and metabolite_frequency_order[1:][count_index][pos_all_meta]!='':
just_frequency.append([metabolite_frequency_order[1:][count_index][pos_all_meta+1],metabolite_frequency_order[1:][count_index][pos_all_meta]])
count_index+=1
dataframe_frequency= pd.DataFrame(data=just_frequency) # trouver une méthode qui marche tout le temps dataframe_frequency= pd.DataFrame(data=just_frequency) # trouver une méthode qui marche tout le temps
colnames_frequency = list(dataframe_frequency.columns) colnames_frequency = list(dataframe_frequency.columns)
if type_of_view=="all" or type_of_view=="bar_plot" or type_of_view=="bar_plot_f" or type_of_view=="bar_f_meta_plot" : if type_of_view=="all" or type_of_view=="bar_plot" or type_of_view=="bar_plot_f" or type_of_view=="bar_f_meta_plot" :
barplot_r=barplot(colnames_frequency[1], colnames_frequency[0], dataframe_frequency, title="Fréquence des métabolites", figure_size=(22, 10),ax_x_label="Métabolites d'intérêt", ax_y_label='Fréquence', decimal='%.0f',size_of_labels=7) barplot_r=barplot(colnames_frequency[1], colnames_frequency[0], dataframe_frequency, title="Fréquence des métabolites", figure_size=(22, 10),ax_x_label="Métabolites d'intérêt", ax_y_label='Fréquence', decimal='%.0f',size_of_labels=7)
if save_graph=="all" or save_graph=="bar_plot" or save_graph=="bar_plot_f" or save_graph=="bar_f_meta_plot" : if save_graph=="all" or save_graph=="bar_plot" or save_graph=="bar_plot_f" or save_graph=="bar_f_meta_plot" :
...@@ -365,14 +370,9 @@ def complete_processing_of_mapping_results (file,outf, mapper,sep=";",type_of_vi ...@@ -365,14 +370,9 @@ def complete_processing_of_mapping_results (file,outf, mapper,sep=";",type_of_vi
plt.show() plt.show()
if __name__=="__main__": if __name__=="__main__":
map="ME" #CPDB, MA, ME, RAMP map="RAMP" # RAMP
sortie="test.excel"
view="all" #all, meta_box, bar_plot_f, bar_plot_r,bar_plot, bar_f_meta_plot, bar_r_meta_plot view="all" #all, meta_box, bar_plot_f, bar_plot_r,bar_plot, bar_f_meta_plot, bar_r_meta_plot
save="all" #all, meta_box, bar_plot_f, bar_plot_r,bar_plot, bar_f_meta_plot, bar_r_meta_plot save="all" #all, meta_box, bar_plot_f, bar_plot_r,bar_plot, bar_f_meta_plot, bar_r_meta_plot
infile="ExportExcel_6843" infile="C:\\Users\\mumec\\Desktop\\fichier_mis_en_forme_programme_total\\RAMP\\sortie_Mapping_RAMP_L100_CheEBI.csv"
#infile="C:\\Users\\mumec\\Desktop\\fichier_mis_en_forme_programme_total\\CPDB\\Resultats_mapping_Chebi_ID_L100_CPDB.csv"
#infile="C:\\Users\\mumec\\Desktop\\fichier_mis_en_forme_programme_total\\RAMP\\sortie_Mapping_RAMP_L100_CheEBI.csv"
#infile="C:\\Users\\mumec\\Desktop\\fichier_mis_en_forme_programme_total\\MA\\MA_EA_Metabolites_L100_mis_en_forme_pour_le_programme.csv"
finishfile="C:\\Users\\mumec\\Desktop\\fichier_mis_en_forme_programme_total\\test.xlsx" finishfile="C:\\Users\\mumec\\Desktop\\fichier_mis_en_forme_programme_total\\test.xlsx"
#corsfile="C:\\Users\\mumec\\Desktop\\fichier_mis_en_forme_programme_total\\liste_Chebi_des_100.csv" plus nécessaire
complete_processing_of_mapping_results(infile,finishfile,map,type_of_view="all",save_graph="all") complete_processing_of_mapping_results(infile,finishfile,map,type_of_view="all",save_graph="all")
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment