Skip to content
Snippets Groups Projects
Commit 22a72417 authored by UMEC Mathieu's avatar UMEC Mathieu
Browse files

adjust for CPDB visu

parent 15652b41
No related branches found
No related tags found
No related merge requests found
......@@ -138,7 +138,7 @@ def up_down_path_plot(l_path, up, down, log_p):
return : 1 plot of regulation pathways
"""
fig, ax1 = plt.subplots()
fig, ax1 = plt.subplots(figsize=(22, 14))
plt.subplots_adjust(top=0.95, bottom=0.30)
l_bar = 0.8
x = range(len(down))
......@@ -152,10 +152,10 @@ def up_down_path_plot(l_path, up, down, log_p):
ax2.set_xlabel("Pathways")
ax2.set_ylabel("-log(pvalue)")
plt.ylim(bottom = 0, top=max(log_p)+0.5)
fig.legend(loc='upper right', bbox_to_anchor=(0.9, 0.88))
fig.legend(loc='upper right', bbox_to_anchor=(0.9, 0.95))
ax1.set_xticks(l_path)
ax1.set_xticklabels(l_path, size=6.5, rotation=-90, ha='center')
plt.show()
return(fig)
if __name__ == "__main__":
......@@ -163,7 +163,8 @@ if __name__ == "__main__":
UP = [5, 8, 21]
DOWN = [41, 13, 9]
LOG_P = [13.61, 7.96, 4.64]
up_down_path_plot(L_PATH, UP, DOWN, LOG_P)
figg = up_down_path_plot(L_PATH, UP, DOWN, LOG_P)
plt.show()
......
......@@ -8,7 +8,7 @@ import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd
from math import log
from math import log, floor
import sys
sys.path.append('C:\\Users\\mumec\\Desktop\\Dossier_gitlab_local\\traitement_des_données')
from Visualisation_des_donnes_de_mapping import up_down_path_plot
......@@ -91,6 +91,9 @@ def recup_ramp_pathways_list(ramp_mapping_result, correspondence_file):
return l_to_return
def recup_ramp_enrichment_pathways_list(ramp_mapping_result, correspondence_file):
def recup_cpdb_pathways_list(cpdb_mapping_result, correspondence_file):
"""
Give a list of pathways with the correspondent metabolites names
......@@ -108,6 +111,8 @@ def recup_cpdb_pathways_list(cpdb_mapping_result, correspondence_file):
l_pathways = l_pathways[1:]
l_path_metabo_whith_top = column_recovery(cpdb_mapping_result, 5)
l_path_metabo = l_path_metabo_whith_top[1:]
p_value = column_recovery(cpdb_mapping_result, 0)
m_inp_ol = column_recovery(cpdb_mapping_result, 8)
l_to_return = []
for num_path_t, l_p_m in enumerate(l_path_metabo):
path_cont = []
......@@ -130,6 +135,8 @@ def recup_cpdb_pathways_list(cpdb_mapping_result, correspondence_file):
path_cont. append(str(l_p_m))
paths_to_rec = cor_index(path_cont, associated_chebi, associated_name)
paths_to_rec.insert(0, l_pathways[num_path_t])
paths_to_rec.insert(0, m_inp_ol[num_path_t + 1])
paths_to_rec.insert(0, p_value[num_path_t + 1])
l_to_return.append(paths_to_rec)
return l_to_return
......@@ -398,25 +405,14 @@ def c_p_o_m_r(file, outf, mapper, type_of_view="all", save_plot="all",
else:
n_c = int(input('how many columns are there in the file?'))
l_of_pathways_list = recup_ma_pathways_list(file, n_c)
if modul != None:
if modul == True:
list_path = []
up = []
down = []
log_p = []
metabo = column_recovery(f_modul, 0)
value_modul = column_recovery(f_modul, 1)
#print(l_of_pathways_list)
for i_p_l, path_l in enumerate(l_of_pathways_list):
l_of_pathways_list[i_p_l][2] = comma_cleaning(path_l[2])
if modul == True:
......@@ -425,15 +421,43 @@ def c_p_o_m_r(file, outf, mapper, type_of_view="all", save_plot="all",
list_path.append(l_of_pathways_list[i_p_l][2])
for path_meta in path_l[3:]:
# print(comma_cleaning(path_meta)) Probable probléme de version entre ME et les autres (a vériifer)
if float(value_modul[metabo.index(comma_cleaning(path_meta))]) >= 0:
actu_up += 1
#print(path_meta)
if mapper == "ME":
if float(value_modul[metabo.index(comma_cleaning(path_meta))]) >= 0:
actu_up += 1
else:
actu_down += 1
else:
actu_down += 1
up.append((actu_up/path_l[1])*100)
down.append((actu_down/path_l[1])*100)
log_p.append(-log(path_l[0]))
if float(value_modul[metabo.index(path_meta)]) >= 0:
actu_up += 1
else:
actu_down += 1
up.append((actu_up/int(path_l[1]))*100)
down.append((actu_down/int(path_l[1]))*100)
log_p.append(-log(float(path_l[0])))
if modul == True:
up_down_path_plot(list_path, up, down, log_p)
n_m_i_p = 200
if len(log_p) > n_m_i_p:
print(len(log_p))
under_plot = floor(len(log_p)/n_m_i_p)
print(floor(len(log_p)/n_m_i_p))
for plot in range(under_plot):
up_u_p = up[n_m_i_p*plot:n_m_i_p*plot+n_m_i_p]
down_u_p = down[n_m_i_p*plot:n_m_i_p*plot+n_m_i_p]
log_p_u_p = log_p[n_m_i_p*plot:n_m_i_p*plot+n_m_i_p]
list_path_u_p = list_path[n_m_i_p*plot:n_m_i_p*plot+n_m_i_p]
plot_u = up_down_path_plot(list_path_u_p, up_u_p, down_u_p, log_p_u_p)
plt.savefig(fold_of_visu_sav+"up_down_path_plot"+str(plot)+".png")
#plt.show()
up_u_p = up[n_m_i_p*plot+n_m_i_p:]
down_u_p = down[n_m_i_p*plot+n_m_i_p:]
log_p_u_p = log_p[n_m_i_p*plot+n_m_i_p:]
list_path_u_p = list_path[n_m_i_p*plot+n_m_i_p:]
plot_u = up_down_path_plot(list_path_u_p, up_u_p, down_u_p, log_p_u_p)
plt.savefig(fold_of_visu_sav+"up_down_path_plot"+str(under_plot + 1)+".png")
else :
plot = up_down_path_plot(list_path, up, down, log_p)
plt.savefig(fold_of_visu_sav+"up_down_path_plot.png")
if midfile == "Yes":
mid_data = pd.DataFrame(l_of_pathways_list, dtype=object)
excel_file_writer(mid_data, midfile_name, sheetname="Resultats")
......@@ -591,10 +615,15 @@ def c_p_o_m_r(file, outf, mapper, type_of_view="all", save_plot="all",
if __name__ == "__main__":
#MAP = 'RAMP'
#MAP = "CPDB"
MAP = "ME"
VIEW = "all"
SAVE = "no"
#INFILE = LOCAL + "CPDB\\Resultats_mapping_Chebi_ID_L100_CPDB.csv"
INFILE = "ExportExcel_6843"
#INFILE = LOCAL + "RAMP\\sortie_Mapping_RAMP_L100_CheEBI.csv"
FINISHFILE = LOCAL + "test.xlsx"
FILE_MODUL = LOCAL + "L100_modulation_artificielle_HumanCyc.csv"
#FILE_MODUL = LOCAL + "CPDB\\liste_Chebi_des_100_chebi_ConsensusPAthDB_modul.csv"
c_p_o_m_r(INFILE, FINISHFILE, MAP, type_of_view=VIEW, save_plot=SAVE, modul=True, f_modul=FILE_MODUL)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment