Skip to content
Snippets Groups Projects
Commit 7fdfa5b3 authored by Jean-Matthieu Monnet's avatar Jean-Matthieu Monnet
Browse files

4.0.8 to CRAN

parent 35ffcc40
No related branches found
No related tags found
No related merge requests found
Pipeline #287336 passed
Package: lidaRtRee
Type: Package
Version: 4.0.7
Version: 4.0.8
Title: Forest Analysis with Airborne Laser Scanning (LiDAR) Data
Date: 2024-09-13
Date: 2025-01-22
Authors@R: c(
person("Jean-Matthieu", "Monnet", email = "jean-matthieu.monnet@inrae.fr", role = c("aut", "cre"), comment = c(ORCID = "0000-0002-9948-9891")),
person("Pascal", "Obstétar", email = "pascal.obstetar@onf.fr", role = c("ctb"), comment = c(ORCID = "0000-0002-2811-7548")))
......
# lidaRtRee 4.0.8
## Change
* number of threads used by package `lidR` set to 2 in examples.
* projection information (epsg 2154) added to external data `las_chablais3.las`.
# lidaRtRee 4.0.7
## New
......@@ -8,7 +15,7 @@
## Change
* `boxcox_tr()` and `boxcox_itr()` do not automatically replace `0` with `NA` anymore.
* `RasterLayer` objects are not supported anymore as the `raster` package package is now obsolete.
* `RasterLayer` objects are not supported anymore as the `raster` package is now obsolete.
* in `aba_build_model()`, when specified the minimum `threshold` parameter now replaces non finite values in predictions.
* added `...` argument in `aba_build_model()`: passed to `leaps::regsubsets()`
......
......@@ -54,7 +54,7 @@
#' data(quatre_montagnes)
#' # build ABA model for basal area, with all metrics as predictors
#' model_aba <- aba_build_model(quatre_montagnes$G_m2_ha, quatre_montagnes[, 9:76],
#' transform = "boxcox", nmax = 3
#' transform = "boxcox", nmax = 2
#' )
#' # summary of regression model
#' summary(model_aba$model)
......@@ -624,9 +624,10 @@ aba_combine_strata <- function(model.list, plotsId = NULL) {
#' @examples
#' # load Quatre Montagnes dataset
#' data(quatre_montagnes)
#' # build ABA model for basal area, with all metrics as predictors
#' model_aba <- aba_build_model(quatre_montagnes$G_m2_ha, quatre_montagnes[, 9:76],
#' transform = "boxcox", nmax = 3
#' # build ABA model for basal area, with three metrics as predictors
#' model_aba <- aba_build_model(quatre_montagnes$G_m2_ha,
#' quatre_montagnes[, c("zpcum8", "ipcumzq70", "p_hmin")],
#' transform = "log", nmax = 2
#' )
#'
#' # plot field values VS predictions in cross-validation
......
......@@ -16,8 +16,6 @@
aa_las_chablais3 <- function() {
LASfile <- system.file("extdata", "las_chablais3.laz", package="lidaRtRee")
las_chablais3 <- lidR::readLAS(LASfile)
# set projection
lidR::projection(las_chablais3) <- 2154
las_chablais3
}
......@@ -43,9 +41,9 @@ aa_las_chablais3 <- function() {
#' # load LAS file
#' LASfile <- system.file("extdata", "las_chablais3.laz", package="lidaRtRee")
#' las_chablais3 <- lidR::readLAS(LASfile)
#' # set projection
#' lidR::projection(las_chablais3) <- 2154
#'
#' # set number of threads
#' lidR::set_lidr_threads(2)
#' # create a digital surface model with first-return points, resolution 0.5 m
#' dsm <- points2DSM(lidR::filter_first(las_chablais3), res = 0.5)
#'
......@@ -95,9 +93,9 @@ points2DSM <- function(.las, res = 1, xmin, xmax, ymin, ymax) {
#' # load LAS file
#' LASfile <- system.file("extdata", "las_chablais3.laz", package="lidaRtRee")
#' las_chablais3 <- lidR::readLAS(LASfile)
#' # set projection
#' lidR::projection(las_chablais3) <- 2154
#'
#'
#' # set number of threads
#' lidR::set_lidr_threads(2)
#' # create digital terrain model with points classified as ground
#' dtm <- points2DTM(las_chablais3)
#'
......
......@@ -17,8 +17,6 @@
#' @examples
#' LASfile <- system.file("extdata", "las_chablais3.laz", package="lidaRtRee")
#' las_chablais3 <- lidR::readLAS(LASfile)
#' # set projection information
#' lidR::projection(las_chablais3) <- 2154
#' las_chablais3
#' @name las_chablais3
NULL
......
......@@ -20,9 +20,9 @@
#' # load LAS file
#' LASfile <- system.file("extdata", "las_chablais3.laz", package="lidaRtRee")
#' las_chablais3 <- lidR::readLAS(LASfile)
#' # set projection
#' lidR::projection(las_chablais3) <- 2154
#'
#'
#' # set number of threads
#' lidR::set_lidr_threads(2)
#' # extract four point clouds from LAS object
#' llas <- list()
#' llas[["A"]] <- lidR::clip_circle(las_chablais3, 974350, 6581680, 10)
......@@ -109,7 +109,9 @@ clouds_metrics <- function(llasn,
#' # load LAS file
#' LASfile <- system.file("extdata", "las_chablais3.laz", package="lidaRtRee")
#' las_chablais3 <- lidR::readLAS(LASfile)
#'
#'
#' # set number of threads
#' lidR::set_lidr_threads(2)
#' # extract two point clouds from LAS object
#' llas <- lidR::clip_circle(las_chablais3,
#' c(974350, 974390),
......@@ -235,6 +237,8 @@ std_tree_metrics <- function(x, area_ha = NA) {
#' @return a data.frame with altitude, exposition (gr), slope (gr) and adjR2 of
#' plane fitting
#' @examples
#' # set number of threads
#' lidR::set_lidr_threads(2)
#' # sample points
#' XYZ <- data.frame(x = runif(200, -10, 10), y = runif(200, -10, 10))
#' XYZ$z <- 350 + 0.3 * XYZ$x + 0.1 * XYZ$y + rnorm(200, mean = 0, sd = 0.5)
......@@ -348,6 +352,8 @@ terrain_points_metrics <- function(p, centre = NULL, r = NULL) {
#' LASfile <- system.file("extdata", "las_chablais3.laz", package="lidaRtRee")
#' las_chablais3 <- lidR::readLAS(LASfile)
#'
#' # set number of threads
#' lidR::set_lidr_threads(2)
#' # extract two point clouds from LAS object
#' llas <- lidR::clip_circle(las_chablais3,
#' c(974350, 974390),
......
......@@ -1145,7 +1145,7 @@ cimg2Raster <- function(cimg, r = NULL) {
#' filtered to avoid effect of holes on volume and surface computation
#' @param NA_replace numeric. value to replace NA values with.
#' @param maxpixels numeric. maximum number of pixels to be converted to cimg
#' (argument passed to \code{\link{as.cimg}}).
#' (argument passed to \code{\link[imager]{as.cimg}}).
#' @return A cimg object
#' @examples
#' data(chm_chablais3)
......
......@@ -10,7 +10,7 @@
# Install
* `R` >= 4.2.3 recommended, package `lidR` >= 4.0.0 required.
* `R` >= 4.2.3 recommended, package `lidR` >= 4.1.1 required.
* Install from [CRAN](https://cran.r-project.org/package=lidaRtRee), by running in the `R` console: `install.packages("lidaRtRee")`.
* Build development version from source with the `devtools` package: `devtools::install_git("https://forgemia.inra.fr/lidar/lidaRtRee")`.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment