Newer
Older
---
title: "Field plot coregistration with ALS data"
author: "Jean-Matthieu Monnet"
output:
html_document: default
pdf_document: default
papersize: a4
bibliography: "./bibliography.bib"
vignette: >
%\VignetteIndexEntry{Field plot coregistration with ALS data}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r setup, include=FALSE}
# erase all
cat("\014")
rm(list = ls())
# knit options
knitr::opts_chunk$set(echo = TRUE)
knitr::opts_chunk$set(fig.align = "center")
```
Source: [vignettes/coregistration.Rmd](https://forgemia.inra.fr/lidar/lidaRtRee/-/blob/main/vignettes/coregistration.Rmd?plain=1)
This workflow compares a canopy height model (CHM) derived from airborne laser scanning (ALS) data with tree positions inventoried in the field, and then proposes a translation in plot position for better matching. The method is described in @Monnet2014. Here it is exemplified with circular plots, but it can be applied to any shape of field plots. The workflow is based on functions from `R` packages [lidaRtRee](https://cran.r-project.org/package=lidaRtRee) (tested with version `r packageVersion("lidaRtRee")`) and [lidR](https://cran.r-project.org/package=lidR) (tested with version `r packageVersion("lidR")`). Example data were acquired in the forest of Lac des Rouges Truites (Jura, France).
## Material
### Field data
The study area is a part of the forest of Lac des Rouges Truites. 44 plots have been inventoried, 15 are available for testing. Plots have a 14.10 m radius. A data.frame `p` contains the positions of the center of plots. Attributes are:
* `placette`: plot id
- `Xtheo` and `Ytheo`: XY coordinates initially sampled when preparing the field inventory
- `XGPS` and `YGPS`: XY coordinates recorded in the field with a GNSS receiver during the field inventory
- `Prec`: GNSS precision in meter specified by the receiver
- `dist`: horizontal distance between the sampled and recorded coordinates.
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
```{r plots, include = TRUE}
# load plot coordinates (data.frame with lines corresponding to the las objects)
load(file = "./data/coregistration/plotsCoregistration.rda")
head(p, n = 3L)
```
On each plot, five trees which were considered suitable for coregistration (vertical trunk, high and peak-shaped crown, well separated from neighboring trees) have been positioned relatively to the plot center. From the XY coordinates recorded by the GNSS receiver and the relative coordinates (slope, distance, azimuth), the XY coordinates of those trees are computed. Data.frame `ap` contains the following attributes:
* `plac`: plot id
- `n`: tree id
- `dia`: tree diameter in cm
- `distR`: slope distance from the plot center to tree center, in m
- `azimutG`: azimuth from the plot center to the tree center, in grades
- `pente.`: slope from plot center to tree center, in grades
- `XYZGPS`: coordinates of the plot center
- `xyz`: coordinates of the tree center
- `d`: horizontal distance between plot center and tree in m
```{r trees, include = TRUE}
# load inventoried trees (data.frame with plot id info )
load(file = "./data/coregistration/treesCoregistration.rda")
head(ap, n = 3L)
```
### ALS data
Airborne laser scanning data on the study area is part of a campaign acquired in 2016 with an airborne RIEGL LMS Q680i sensor. Acquisition was funded by the Région Franche-Comté.
ALS data over the plots is provided as a list of LAS objects in `rda` file.
```{r las, include = TRUE}
# load point cloud over reference plots (list of las objects)
load(file = "./data/coregistration/lasCoregistration.rda")
```
Display point cloud of plot 1.
```{r lasplot, include=TRUE, eval=FALSE, webgl=TRUE, warning=FALSE}
# plot point cloud
lidR::plot(las[[1]])
```
The code to extract LAS objects from a directory containing the LAS files is (code corresponding to [Parameters] has to be run beforehand):
```{r extractlas, include = TRUE, eval=FALSE}
# create catalog of LAS files
cata <- lidR::readALSLAScatalog("/directory_with_classified_laz_files/")
# "/media/reseau/lessem/ProjetsCommuns/Lidar/data/Franche-Comte/norm.laz/"
# set coordinate system
lidR::projection(cata) <- 2154
# option to read only xyzc attributes
# (coordinates, intensity, echo order and classification) from files
# lidR::opt_select(cata) <- "xyzc"
# extract LAS data on plot extent
las <- lidR::clip_circle(cata, p$XGPS, p$YGPS, p_radius + b_size + 5)
# normalize heights if point cloud are not already normalized
las <- lapply(las, function(x) {
lidR::normalize_height(x, lidR::tin())
})
# save as rda file for later use
save(las, file = "./data/coregistration/lasCoregistration.rda")
```
## Parameters
Several parameters have to be specified for optimal results.
```{r parameters, include = TRUE}
# vegetation height threshold for removal of high values
hmax <- 50
# field plot radius for computation of pseudo-CHM on the inventory area
p_radius <- 14.105
# raster resolution for image processing
r_res <- 0.5
# maximum distance around initial position to search for coregistration
b_size <- 5
# increment step to search for coregistration
# (should be a multiple of resolution)
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
s_step <- 0.5
```
## Coregistration of one plot
### Canopy height model
The first step is to compute the canopy height model from the ALS data, and remove artefacts by thresholding extreme values and applying a median filter.
```{r chm, include = TRUE, fig.width = 9, fig.height = 3.5}
# Choose a plot as example
i <- 10
# compute canopy height model
chm <- lidR::rasterize_canopy(las[[i]], res = r_res, algorithm = lidR::p2r())
# apply threshold to canopy height model (CHM)
chm[chm > hmax] <- hmax
# fill NA values with 0
chm[is.na(chm)] <- 0
# apply median filter (3x3 window) to CHM
chmfilt <- lidaRtRee::dem_filtering(chm, "Median", 3, sigma = 0)$non_linear_image
# plot canopy height model
par(mfrow = c(1, 2))
terra::plot(chm, main = "Raw canopy height model")
terra::plot(chmfilt, main = "Filtered canopy height model")
```
### Plot mask from tree inventory
The trees corresponding to the plot are extracted, and a plot mask is computed from the plot center and radius.
```{r mask, include = TRUE, fig.width = 4.5, fig.height = 3.5, warning=FALSE}
# plot centre
centre <- p[i, c("XGPS", "YGPS")]
# extract plot trees
trees <- ap[ap$plac == p$placette[i], ]
# create raster with plot extent
r <- lidaRtRee::circle2Raster(centre$XGPS, centre$YGPS, p_radius,
resolution = r_res)
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# keep only trees with diameter information
trees <- trees[!is.na(trees[, "dia"]), ]
# create plot mask
r_mask <- lidaRtRee::raster_xy_mask(c(centre$XGPS, centre$YGPS),
p_radius, r, binary = T)
# replace 0 by NA
r_mask[r_mask == 0] <- NA
# specify projection
terra::crs(r_mask) <- "epsg:2154"
# display plot mask
terra::plot(r_mask, main = "Plot mask and tree positions", legend = FALSE)
# add tree positions
points(trees[, c("x", "y")], cex = trees[, "dia"] / 40)
# add plot center
points(centre, pch = 3)
legend("topleft", c("Trees", "Plot center"), pch = c(1, 3))
```
### Compute correlation and identify optimal translation
First the function computes the correlation for different possible translations of the plot center inside the buffer specified by the user, and outputs an image of correlation values between the ALS CHM and the pseudo CHM. The pseudo CHM is a height model where at the location of inventoried trees pixels are attributed the value corresponding to tree size (e.g. height or diameter). Second the correlation image is analyzed to identify which translation yields the highest correlation. The function outputs a list which first element is the correlation image, and the second one the corresponding statistics.
```{r correlation, include = TRUE}
# compute correlation image
coreg <- lidaRtRee::coregistration(chmfilt, trees[, c("x", "y", "dia")],
mask = r_mask,
buffer = b_size, step = s_step, dm = 2, plot = FALSE
)
# correlation image statistics
round(coreg$local_max, 2)
```
The maximum of the correlation image is located at (`r coreg$local_max$dx1`, `r coreg$local_max$dy1`), given by attributes `dx1` and `dy1`.
```{r plotcorrelation, include = TRUE, fig.width = 12, fig.height = 4}
par(mfrow = c(1, 3))
terra::plot(chmfilt, main = "Initial tree positions and CHM")
# display initial tree positions
graphics::points(trees$x, trees$y, cex = trees$dia / 40)
# display correlation image
terra::plot(coreg$correlation_raster,
main = "Correlation image",
col = cm.colors(16)
)
# plot local maximum
graphics::points(coreg$local_max$dx1, coreg$local_max$dy1, pch = 4)
abline(h = 0, lty = 2)
abline(v = 0, lty = 2)
legend("topleft", "Maximum", pch = 4)
#
terra::plot(chmfilt, main = "Coregistered tree positions and CHM")
# display coregistered tree positions
graphics::points(trees$x + coreg$local_max$dx1, trees$y + coreg$local_max$dy1,
cex = trees$dia / 40, col = "red"
)
# display initial plot center
graphics::points(p[i, c("XGPS", "YGPS")], pch = 3)
# display coregistered plot center
graphics::points(p$XGPS[i] + coreg$local_max$dx1,
p$YGPS[i] + coreg$local_max$dy1,
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
pch = 3,
col = "red"
)
graphics::legend("topleft", c("Initial center", "Coregistered"),
pch = 3,
col = c("black", "red")
)
# export as pdf
# dev.copy2pdf(file = paste("Coregistration_", p$placette[i], ".pdf", sep = ""))
```
## Batch processing
The following code processes several plots using multi-core computing. It is based on packages `future` and `future.apply` for parallel computing.
```{r batch.cores, include = TRUE, eval=TRUE}
# specify to use two parallel sessions
future::plan("multisession", workers = 2L)
# remove warning when using random numbers in parallel sessions
options(future.rng.onMisuse = "ignore")
```
### CHMs computation
First CHMs are calculated for each point cloud contained in the list.
```{r batch.chm, include = TRUE, eval=TRUE, warning = FALSE}
l_chm <- future.apply::future_lapply(
as.list(1:length(las)),
FUN = function(i) {
# compute CHM
chm <- lidR::rasterize_canopy(las[[i]], res = r_res,
algorithm = lidR::p2r(), pkg = "terra")
# apply threshold to canopy height model (CHM)
chm[chm > hmax] <- hmax
# fill NA values with 0
chm[is.na(chm)] <- 0
# apply median filter (3x3 window) to CHM
chmfilt <-
lidaRtRee::dem_filtering(chm, "Median", 3, sigma = 0)[[1]]
return(terra::wrap(chmfilt))
}
)
```
### Trees lists extraction and plot masks computation
```{r batch.mask, include = TRUE, eval=TRUE}
l_field <- future.apply::future_lapply(
as.list(1:length(las)),
FUN = function(i) {
# plot centre
centre <- p[i, c("XGPS", "YGPS")]
# extract plot trees
trees <- ap[ap$plac == p$placette[i],]
# create raster with plot extent
r <-
lidaRtRee::circle2Raster(centre$XGPS, centre$YGPS, p_radius,
resolution = r_res)
# keep only trees with diameter information
trees <- trees[!is.na(trees[, "dia"]),]
# create plot mask
r_mask <- lidaRtRee::raster_xy_mask(rbind(c(centre$XGPS, centre$YGPS),
c(centre$XGPS, centre$YGPS)),
c(p_radius, p_radius), r,
binary = T)
# replace 0 by NA
r_mask[r_mask == 0] <- NA
# specify projection
terra::crs(r_mask) <- "epsg:2154"
return(list(trees = trees[, c("x", "y", "dia")],
r_mask = terra::wrap(r_mask)))
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
}
)
```
### Correlation images and corresponding statistics computation
Then the correlation image and corresponding statistics are computed for each plot.
```{r batch.correlation, include = TRUE, eval=TRUE}
l_coreg <- future.apply::future_lapply(
as.list(1:length(las)),
FUN = function(i) {
dummy <- lidaRtRee::coregistration(
terra::rast(l_chm[[i]]),
l_field[[i]]$trees,
mask = terra::rast(l_field[[i]]$r_mask),
buffer = b_size,
step = s_step,
dm = 2,
plot = FALSE
)
# wrap raster
dummy$correlation_raster <- terra::wrap(dummy$correlation_raster)
# output
return(dummy)
}
)
```
Finally results for all plots are combined in a single data.frame.
```{r batch.translations, include = TRUE, eval=TRUE}
translations <- future.apply::future_lapply(
as.list(1:length(las)),
FUN = function(i) {
# create data.frame with coregistration results and new plot coordinates
data.frame(
plotid = p$placette[i],
X_cor = p$XGPS[i] + l_coreg[[i]]$local_max$dx1,
Y_cor = p$YGPS[i] + l_coreg[[i]]$local_max$dy1,
l_coreg[[i]]$local_max
)
}
)
# bind in single data.frame
translations <- do.call(rbind, translations)
# remove row.names
row.names(translations) <- NULL
#
round(head(translations, n = 3L), 2)
```
### Export graphics as pdf files
```{r batch.plots, include = TRUE, eval=FALSE}
# unwrap raster files
l_chm <- lapply(l_chm, terra::rast)
#
for (i in 1:length(las))
{
# CHM
pdf(file = paste("Coregistration_", p$placette[i], ".pdf", sep = ""))
terra::plot(l_chm[[i]])
# display initial tree positions
graphics::points(l_field[[i]]$trees$x, l_field[[i]]$trees$y,
cex = l_field[[i]]$trees$dia / 40
)
# display coregistered tree positions
graphics::points(l_field[[i]]$trees$x + l_coreg[[i]]$local_max$dx1,
l_field[[i]]$trees$y + l_coreg[[i]]$local_max$dy1,
cex = l_field[[i]]$trees$dia / 40, col = "red"
)
# display initial plot center
graphics::points(p[i, c("XGPS", "YGPS")], pch = 3)
# display coregistered plot center
graphics::points(p$XGPS[i] + l_coreg[[i]]$local_max$dx1,
p$YGPS[i] + l_coreg[[i]]$local_max$dy1,
pch = 3, col = "red"
)
graphics::legend("topleft", c("Initial", "Coregistered"),
pch = 15,
col = c("black", "red")
)
# export as pdf
dev.off()
}
```
### Add coregistered plot positions and update tree coordinates
Optimized plot center positions are added to the original data.
```{r batch.merge, include = TRUE, eval=TRUE}
p <- base::merge(p, translations[, c("plotid", "X_cor", "Y_cor")],
by.x = "placette",
by.y = "plotid"
)
round(head(p, n = 3L), 2)
```
Tree positions are corrected to account for new center position.
```{r batch.correct, include = TRUE, eval=TRUE}
# add plot center coregistered coordinates to trees data.frame
ap <- base::merge(ap, p[, c("placette", "X_cor", "Y_cor")], by.x = "plac",
by.y = "placette")
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
# compute new tree coordinates from coregistered plot center
dummy <- lidaRtRee::polar2Projected(
ap$X_cor, ap$Y_cor, ap$ZGPS, ap$azimutG / 200 * pi,
ap$distR, atan(ap$pente. / 100), 1.55 / 180 * pi,
-2.2 / 180 * pi, 0
)
ap$X_cor <- dummy$x
ap$Y_cor <- dummy$y
# save new table
# write.table(round(p.cor,3),file="coregistered_plots.csv", row.names=F,sep=";")
```
### Analysis of GPS errors
```{r batch.distance, include = FALSE, eval=TRUE}
distance <- sqrt((p$X_cor - p$XGPS)^2 + (p$Y_cor - p$YGPS)^2)
```
Graphics on the difference between initial and corrected positions are displayed. The mean difference is `r round(mean(p$X_cor- p$XGPS), 2)` m in the X axis and `r round(mean(p$Y_cor- p$YGPS),2)` m in the Y axis. `p.values` of a t.test are respectively `r round(t.test(p$X_cor- p$XGPS)$p.value,2)` and `r round(t.test(p$Y_cor- p$YGPS)$p.value, 2)`. Mean absolute distance is `r round(mean(distance), 2)` m with a standard deviation of `r round(sd(distance),2)` m.
```{r batch.distanceplot, include = TRUE, fig.width = 8, fig.height = 4}
par(mfrow = c(1, 2))
# plot position difference with additionnal jitter to visualize same points
plot(jitter(p$X_cor - p$XGPS), jitter(p$Y_cor - p$YGPS),
asp = 1, col = "black",
main = "Corrected-Initial position", xlab = "X difference",
ylab = "Y difference"
)
abline(v = 0, lty = 2)
abline(h = 0, lty = 2)
# Distance between initial and corrected
hist(sqrt((p$X_cor - p$XGPS)^2 + (p$Y_cor - p$YGPS)^2),
main = "Histogram of distances",
xlab = "Absolute distance corrected-initial", ylab = "Number of plots"
)
```
## References