Skip to content
Snippets Groups Projects
Commit c6106f35 authored by sanchezi's avatar sanchezi
Browse files

improve some document parts

parent 1e611282
No related branches found
No related tags found
No related merge requests found
Pipeline #69309 passed
......@@ -5,12 +5,19 @@ Authors@R: c(
person("Bertrand", "Cloez", email = "bertrand.cloez@inrae.fr", role = c("aut")),
person("Isabelle", "Sanchez", email = "isabelle.sanchez@inrae.fr", role = c("aut", "cre")),
person("Benedicte", "Fontez", email = "benedicte.fontez@supagro.fr", role = c("ctr")))
Author: Bertrand Cloez [aut, cre],
Isabelle Sanchez [ctr],
Author: Bertrand Cloez [aut],
Isabelle Sanchez [aut, cre],
Benedicte Fontez [ctr]
Maintainer: Isabelle Sanchez <isabelle.sanchez@inrae.fr>
Description: A method for detecting outliers with a Kalman filter on impulsed
noised outliers and prediction on cleaned data.
noised outliers and prediction on cleaned data. kfino is a robust sequential
algorithm allowing to filter data with a large number of outliers. This
algorithm is based on simple latent linear Gaussian processes as in the
Kalman Filter method and is devoted to detect impulse-noised outliers. These
are data points that differ significantly from other observations. `ML`
(Maximization Likelihood) and `EM` (Expectation-Maximization algorithm)
algorithms were implemented in `kfino`. The method is described in full
details in the following arxiv preprint: <https://arxiv.org/abs/2208.00961>.
License: GPL-3
Depends: R (>= 4.1.0)
Encoding: UTF-8
......
......@@ -6,7 +6,7 @@
# KBO_EM()
#-------------------------------------------------------------------
#' doutlier This function defines an outlier distribution (Surface of a
#' doutlier defines an outlier distribution (Surface of a
#' trapezium) and uses input parameters given in the main function kfino_fit()
#'
#' @param y numeric, point
......@@ -15,7 +15,14 @@
#' @param expertMax numeric, the maximal weight expected by the user
#'
#' @details this function is used to calculate an outlier distribution
#' following a trapezium shape
#' following a trapezium shape.
#' \eqn{y \mapsto \text{doutlier}(y,K,\text{expertMin},\text{expertMax})}
#' is the probability density function on
#' \eqn{[\text{expertMin},\text{expertMax}]} which is linear and verifies
#' \eqn{\text{doutlier}(\text{expertMax},K,\text{expertMin},\text{expertMax})
#' =K*\text{doutlier}(\text{expertMin},K,\text{expertMin},\text{expertMax}).}
#' In particular, when $K=1$ this corresponds to the uniform distribution.
#'
#' @return a numeric value
#' @export
#'
......@@ -34,7 +41,7 @@ doutlier<-function(y,
#' KBO_known a function to calculate a likelihood on given parameters
#'
#' @param param list, see initial parameter list in \code{kfino_fit}
#' @param threshold numeric, threshold for CI, default 0.5
#' @param threshold numeric, threshold for confidence interval, default 0.5
#' @param kappa numeric, truncation setting for likelihood optimization,
#' default 10
#' @param Y character, name of the numeric variable to predict in the
......@@ -50,8 +57,8 @@ doutlier<-function(y,
#' \item{prediction}{vector, the prediction of weights}
#' \item{label}{vector, probability to be an outlier}
#' \item{likelihood}{numeric, the calculated likelihood}
#' \item{lwr}{vector of lower bound CI of the prediction }
#' \item{upr}{vector of upper bound CI of the prediction }
#' \item{lwr}{vector of lower bound confidence interval of the prediction }
#' \item{upr}{vector of upper bound confidence interval of the prediction }
#' \item{flag}{char, is an outlier or not}
#' }
#' @export
......
......@@ -9,7 +9,7 @@ KBO_known(param, threshold, kappa = 10, Y, Tps, N)
\arguments{
\item{param}{list, see initial parameter list in \code{kfino_fit}}
\item{threshold}{numeric, threshold for CI, default 0.5}
\item{threshold}{numeric, threshold for confidence interval, default 0.5}
\item{kappa}{numeric, truncation setting for likelihood optimization,
default 10}
......@@ -29,8 +29,8 @@ a list
\item{prediction}{vector, the prediction of weights}
\item{label}{vector, probability to be an outlier}
\item{likelihood}{numeric, the calculated likelihood}
\item{lwr}{vector of lower bound CI of the prediction }
\item{upr}{vector of upper bound CI of the prediction }
\item{lwr}{vector of lower bound confidence interval of the prediction }
\item{upr}{vector of upper bound confidence interval of the prediction }
\item{flag}{char, is an outlier or not}
}
}
......
......@@ -2,7 +2,7 @@
% Please edit documentation in R/utils_functions.R
\name{doutlier}
\alias{doutlier}
\title{doutlier This function defines an outlier distribution (Surface of a
\title{doutlier defines an outlier distribution (Surface of a
trapezium) and uses input parameters given in the main function kfino_fit()}
\usage{
doutlier(y, K, expertMin, expertMax)
......@@ -20,12 +20,18 @@ doutlier(y, K, expertMin, expertMax)
a numeric value
}
\description{
doutlier This function defines an outlier distribution (Surface of a
doutlier defines an outlier distribution (Surface of a
trapezium) and uses input parameters given in the main function kfino_fit()
}
\details{
this function is used to calculate an outlier distribution
following a trapezium shape
following a trapezium shape.
\eqn{y \mapsto \text{doutlier}(y,K,\text{expertMin},\text{expertMax})}
is the probability density function on
\eqn{[\text{expertMin},\text{expertMax}]} which is linear and verifies
\eqn{\text{doutlier}(\text{expertMax},K,\text{expertMin},\text{expertMax})
=K*\text{doutlier}(\text{expertMin},K,\text{expertMin},\text{expertMax}).}
In particular, when $K=1$ this corresponds to the uniform distribution.
}
\examples{
doutlier(2,5,10,45)
......
......@@ -8,7 +8,7 @@
\description{
\if{html}{\figure{logo.png}{options: style='float: right' alt='logo' width='120'}}
A method for detecting outliers with a Kalman filter on impulsed noised outliers and prediction on cleaned data.
A method for detecting outliers with a Kalman filter on impulsed noised outliers and prediction on cleaned data. kfino is a robust sequential algorithm allowing to filter data with a large number of outliers. This algorithm is based on simple latent linear Gaussian processes as in the Kalman Filter method and is devoted to detect impulse-noised outliers. These are data points that differ significantly from other observations. `ML` (Maximization Likelihood) and `EM` (Expectation-Maximization algorithm) algorithms were implemented in `kfino`. The method is described in full details in the following arxiv preprint: \url{https://arxiv.org/abs/2208.00961}.
}
\details{
xxxxxxxx xxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxx.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment