title: "How to perform a kafino outlier detection"
author: "B. Cloez & I. Sanchez"
date: "`r format(Sys.time(), '%B %d, %Y')`"
output:
html_document:
toc: yes
toc_float: true
number_sections: true
vignette: >
%\VignetteIndexEntry{How to perform a kafino outlier detection}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
```
```{r setup}
library(kafino)
library(dplyr)
library(ggplot2)
```
This vignette describes how to use the **kafino** algorithm on time courses in order to detect impulse noised outliers and predict the parameter of interest.