Skip to content
Snippets Groups Projects
Commit 7413b49b authored by Isabelle Sanchez's avatar Isabelle Sanchez
Browse files

add /doc/ folder

parent 370a7706
No related branches found
No related tags found
No related merge requests found
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(kafino)
library(dplyr)
library(ggplot2)
## -----------------------------------------------------------------------------
data(spring1)
# Dimension of this dataset
dim(spring1)
head(spring1)
## ----error=TRUE---------------------------------------------------------------
# --- Without Optimisation on initial parameters
resu2<-kafino_fit(datain=spring1,
Tvar="dateNum",Yvar="Poids",
expertMin=30,expertMax=75,
Max=100,Min=10,
X=c(56,0.5,42),
doOptim=FALSE,aa=0.001)
# flags are qualitative
kafino_plot(resuin=resu2,typeG="quali",
Xvar="Day",Yvar="Poids",Ident="IDE")
# flags are quantitative
kafino_plot(resuin=resu2,typeG="quanti",
Xvar="Day",Yvar="Poids",Ident="IDE")
## ----error=TRUE---------------------------------------------------------------
# --- With Optimisation on initial parameters
resu1<-kafino_fit(datain=spring1,
Tvar="dateNum",Yvar="Poids",
expertMin=30,expertMax=75,
Max=100,Min=10,
X=c(56,0.5,42),
doOptim=TRUE,aa=0.001)
# flags are qualitative
kafino_plot(resuin=resu1,typeG="quali",
Xvar="Day",Yvar="Poids",Ident="IDE")
# flags are quantitative
kafino_plot(resuin=resu1,typeG="quanti",
Xvar="Day",Yvar="Poids",Ident="IDE")
## ----session,echo=FALSE,message=FALSE, warning=FALSE--------------------------
sessionInfo()
---
title: "How to perform a kafino outlier detection"
author: "B. Cloez & I. Sanchez"
date: "`r format(Sys.time(), '%B %d, %Y')`"
output:
html_document:
toc: yes
toc_float: true
number_sections: true
vignette: >
%\VignetteIndexEntry{How to perform a kafino outlier detection}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
```
```{r setup}
library(kafino)
library(dplyr)
library(ggplot2)
```
This vignette describes how to use the **kafino** algorithm on time courses in order to detect impulse noised outliers and predict the parameter of interest.
RAJOUTER DU TEXTE
# Description of the `spring1` dataset
blablabla
```{r}
data(spring1)
# Dimension of this dataset
dim(spring1)
head(spring1)
```
# Kafino algorithm
## Initial parameters not optimized
```{r,error=TRUE}
# --- Without Optimisation on initial parameters
resu2<-kafino_fit(datain=spring1,
Tvar="dateNum",Yvar="Poids",
expertMin=30,expertMax=75,
Max=100,Min=10,
X=c(56,0.5,42),
doOptim=FALSE,aa=0.001)
# flags are qualitative
kafino_plot(resuin=resu2,typeG="quali",
Xvar="Day",Yvar="Poids",Ident="IDE")
# flags are quantitative
kafino_plot(resuin=resu2,typeG="quanti",
Xvar="Day",Yvar="Poids",Ident="IDE")
```
## Initial parameters optimized
```{r,error=TRUE}
# --- With Optimisation on initial parameters
resu1<-kafino_fit(datain=spring1,
Tvar="dateNum",Yvar="Poids",
expertMin=30,expertMax=75,
Max=100,Min=10,
X=c(56,0.5,42),
doOptim=TRUE,aa=0.001)
# flags are qualitative
kafino_plot(resuin=resu1,typeG="quali",
Xvar="Day",Yvar="Poids",Ident="IDE")
# flags are quantitative
kafino_plot(resuin=resu1,typeG="quanti",
Xvar="Day",Yvar="Poids",Ident="IDE")
```
# Session informations
```{r session,echo=FALSE,message=FALSE, warning=FALSE}
sessionInfo()
```
This diff is collapsed.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment