#' Renyi Divergence between Centered Multivariate $t$ Distributions
#'
#' Computes the Renyi divergence between two random vectors distributed
#' according to multivariate $t$ distributions (MTD) with zero mean vector.
#'
#' @aliases rdstudent
#'
#' @usage rdstudent(nu1, Sigma1, nu2, Sigma2, bet, eps = 1e-06)
#' @param nu1 numéric. The degrees of freedom of the first distribution.
#' @param Sigma1 symmetric, positive-definite matrix. The correlation matrix of the first distribution.
#' @param nu2 numéric. The degrees of freedom of the second distribution.
#' @param Sigma2 symmetric, positive-definite matrix. The correlation matrix of the second distribution.
#' @param bet numeric., positive and not equal to 1. Order of the Renyi divergence.
#' @param eps numeric. Precision for the computation of the partial derivative of the Lauricella \eqn{D}-hypergeometric function (see Details). Default: 1e-06.
#' @return A numeric value: the Renyi divergence between the two distributions,
#' with two attributes \code{attr(, "epsilon")} (precision of the result of the Lauricella \eqn{D}-hypergeometric function,see Details)
#' and \code{attr(, "k")} (number of iterations).
#'
#' @details Given \eqn{X_1}, a random vector of \eqn{R^p} distributed according to the MTD
#' with parameters \eqn{(\nu_1, \mathbf{0}, \Sigma_1)}
#' and \eqn{X_2}, a random vector of \eqn{R^p} distributed according to the MTD
#' with parameters \eqn{(\nu_2, \mathbf{0}, \Sigma_2)}.
#' Its computation uses the \code{\link{lauricella}} function.
#'
#' @author Pierre Santagostini, Nizar Bouhlel
#' @references N. Bouhlel and D. Rousseau (2023), Exact Rényi and Kullback-Leibler Divergences Between Multivariate t-Distributions, IEEE Signal Processing Letters.