Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
mggd
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
ImHorPhen
mggd
Commits
6cce0473
Commit
6cce0473
authored
2 years ago
by
SANTAGOSTINI Pierre
Browse files
Options
Downloads
Patches
Plain Diff
Details: density when p=1
parent
a473b688
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
R/mvdggd.R
+4
-1
4 additions, 1 deletion
R/mvdggd.R
man/mvdggd.Rd
+3
-0
3 additions, 0 deletions
man/mvdggd.Rd
with
7 additions
and
1 deletion
R/mvdggd.R
+
4
−
1
View file @
6cce0473
...
...
@@ -16,7 +16,10 @@ mvdggd <- function(x, mu, Sigma, beta, tol = 1e-6) {
#'
#' @details The density function of a multivariate generalized Gaussian distribution is given by:
#' \deqn{ \displaystyle{ f(x|\mu, \Sigma, \beta) = \frac{\Gamma\left(\frac{p}{2}\right)}{\pi^\frac{p}{2} \Gamma\left(\frac{p}{2 \beta}\right) 2^\frac{p}{2\beta}} \frac{\beta}{|\Sigma|^\frac{1}{2}} e^{-\frac{1}{2}\left((x-\mu)^T \Sigma^{-1} (x-\mu)\right)^\beta} } }
#'
#'
#' When \eqn{p=1} (univariate case) it becomes:
#' \deqn{ \displaystyle{ f(x|\mu, \sigma, \beta) = \frac{\Gamma\left(\frac{1}{2}\right)}{\pi^\frac{1}{2} \Gamma\left(\frac{1}{2 \beta}\right) 2^\frac{1}{2\beta}} \frac{\beta}{\sigma^\frac{1}{2}} \ e^{-\left(\frac{(x - \mu)^2}{2 \sigma}\right)^\beta} = \frac{\beta}{\Gamma\left(\frac{1}{2 \beta}\right) 2^\frac{1}{2 \beta} \sqrt{\sigma}} \ e^{-\left(\frac{(x - \mu)^2}{2 \sigma}\right)^\beta} } }
#'
#' @author Pierre Santagostini, Nizar Bouhlel
#' @references E. Gomez, M. Gomez-Villegas, H. Marin. A Multivariate Generalization of the Power Exponential Family of Distribution.
#' Commun. Statist. 1998, Theory Methods, col. 27, no. 23, p 589-600.
...
...
This diff is collapsed.
Click to expand it.
man/mvdggd.Rd
+
3
−
0
View file @
6cce0473
...
...
@@ -27,6 +27,9 @@ with mean vector \code{mu}, dispersion matrix \code{Sigma} and shape parameter \
\details{
The density function of a multivariate generalized Gaussian distribution is given by:
\deqn{ \displaystyle{ f(x|\mu, \Sigma, \beta) = \frac{\Gamma\left(\frac{p}{2}\right)}{\pi^\frac{p}{2} \Gamma\left(\frac{p}{2 \beta}\right) 2^\frac{p}{2\beta}} \frac{\beta}{|\Sigma|^\frac{1}{2}} e^{-\frac{1}{2}\left((x-\mu)^T \Sigma^{-1} (x-\mu)\right)^\beta} } }
When \eqn{p=1} (univariate case) it becomes:
\deqn{ \displaystyle{ f(x|\mu, \sigma, \beta) = \frac{\Gamma\left(\frac{1}{2}\right)}{\pi^\frac{1}{2} \Gamma\left(\frac{1}{2 \beta}\right) 2^\frac{1}{2\beta}} \frac{\beta}{\sigma^\frac{1}{2}} \ e^{-\left(\frac{(x - \mu)^2}{2 \sigma}\right)^\beta} = \frac{\beta}{\Gamma\left(\frac{1}{2 \beta}\right) 2^\frac{1}{2 \beta} \sqrt{\sigma}} \ e^{-\left(\frac{(x - \mu)^2}{2 \sigma}\right)^\beta} } }
}
\examples{
mu <- c(0, 1, 4)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment