Skip to content
Snippets Groups Projects
Commit 6cce0473 authored by SANTAGOSTINI Pierre's avatar SANTAGOSTINI Pierre
Browse files

Details: density when p=1

parent a473b688
No related branches found
No related tags found
No related merge requests found
......@@ -16,7 +16,10 @@ mvdggd <- function(x, mu, Sigma, beta, tol = 1e-6) {
#'
#' @details The density function of a multivariate generalized Gaussian distribution is given by:
#' \deqn{ \displaystyle{ f(x|\mu, \Sigma, \beta) = \frac{\Gamma\left(\frac{p}{2}\right)}{\pi^\frac{p}{2} \Gamma\left(\frac{p}{2 \beta}\right) 2^\frac{p}{2\beta}} \frac{\beta}{|\Sigma|^\frac{1}{2}} e^{-\frac{1}{2}\left((x-\mu)^T \Sigma^{-1} (x-\mu)\right)^\beta} } }
#'
#'
#' When \eqn{p=1} (univariate case) it becomes:
#' \deqn{ \displaystyle{ f(x|\mu, \sigma, \beta) = \frac{\Gamma\left(\frac{1}{2}\right)}{\pi^\frac{1}{2} \Gamma\left(\frac{1}{2 \beta}\right) 2^\frac{1}{2\beta}} \frac{\beta}{\sigma^\frac{1}{2}} \ e^{-\left(\frac{(x - \mu)^2}{2 \sigma}\right)^\beta} = \frac{\beta}{\Gamma\left(\frac{1}{2 \beta}\right) 2^\frac{1}{2 \beta} \sqrt{\sigma}} \ e^{-\left(\frac{(x - \mu)^2}{2 \sigma}\right)^\beta} } }
#'
#' @author Pierre Santagostini, Nizar Bouhlel
#' @references E. Gomez, M. Gomez-Villegas, H. Marin. A Multivariate Generalization of the Power Exponential Family of Distribution.
#' Commun. Statist. 1998, Theory Methods, col. 27, no. 23, p 589-600.
......
......@@ -27,6 +27,9 @@ with mean vector \code{mu}, dispersion matrix \code{Sigma} and shape parameter \
\details{
The density function of a multivariate generalized Gaussian distribution is given by:
\deqn{ \displaystyle{ f(x|\mu, \Sigma, \beta) = \frac{\Gamma\left(\frac{p}{2}\right)}{\pi^\frac{p}{2} \Gamma\left(\frac{p}{2 \beta}\right) 2^\frac{p}{2\beta}} \frac{\beta}{|\Sigma|^\frac{1}{2}} e^{-\frac{1}{2}\left((x-\mu)^T \Sigma^{-1} (x-\mu)\right)^\beta} } }
When \eqn{p=1} (univariate case) it becomes:
\deqn{ \displaystyle{ f(x|\mu, \sigma, \beta) = \frac{\Gamma\left(\frac{1}{2}\right)}{\pi^\frac{1}{2} \Gamma\left(\frac{1}{2 \beta}\right) 2^\frac{1}{2\beta}} \frac{\beta}{\sigma^\frac{1}{2}} \ e^{-\left(\frac{(x - \mu)^2}{2 \sigma}\right)^\beta} = \frac{\beta}{\Gamma\left(\frac{1}{2 \beta}\right) 2^\frac{1}{2 \beta} \sqrt{\sigma}} \ e^{-\left(\frac{(x - \mu)^2}{2 \sigma}\right)^\beta} } }
}
\examples{
mu <- c(0, 1, 4)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment