Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • cassiopee/nghyd
1 result
Show changes
Showing
with 46 additions and 937 deletions
docs/en/calculators/par/baffle_fishway_suractif_slope_10_.png

46.3 KiB

docs/en/calculators/par/baffle_fishway_suractif_slope_15_.png

46.8 KiB

......@@ -14,15 +14,15 @@ $$ Q^* = \dfrac{Q}{\sqrt{g}L^{2,5}} $$
to upstream head \(ha\) and the average water level in the pass \(h\) :
![Abacuses of a Fatou baffle fishway for a slope of 10%](baffle_fishway_Fatou_slope_10_.svg)
![Abacuses of a Fatou baffle fishway for a slope of 10%](baffle_fishway_Fatou_slope_10_.png)
*Abacuses of a Fatou baffle fishway for a slope of 10% (Excerpt from Larinier, 2002[^1])*
![Abacuses of a Fatou baffle fishway for a slope of 15%](baffle_fishway_Fatou_slope_15_.svg)
![Abacuses of a Fatou baffle fishway for a slope of 15%](baffle_fishway_Fatou_slope_15_.png)
*Abacuses of a Fatou baffle fishway for a slope of 15% (Excerpt from Larinier, 2002[^1])*
![Abacuses of a Fatou baffle fishway for a slope of 20%](baffle_fishway_Fatou_slope_20_.svg)
![Abacuses of a Fatou baffle fishway for a slope of 20%](baffle_fishway_Fatou_slope_20_.png)
*Abacuses of a Fatou baffle fishway for a slope of 20% (Excerpt from Larinier, 2002[^1])*
......
......@@ -12,11 +12,11 @@ $$ q^* = \dfrac{Q/L}{\sqrt{2g}a^{1,5}} $$
to upstream head \(ha\) and the average water level in the pass \(h\) :
![Abacuses of a mixed / chevron baffles fishway for a slope of 10%](baffle_fishway_mixte_slope_10_.svg)
![Abacuses of a mixed / chevron baffles fishway for a slope of 10%](baffle_fishway_mixte_slope_10_.png)
*Abacuses of a mixed / chevron baffles fishway for a slope of 10% (Excerpt from Larinier, 2002[^1])*
![Abacuses of a mixed / chevron baffles fishway for a slope of 16%](baffle_fishway_mixte_slope_16_.svg)
![Abacuses of a mixed / chevron baffles fishway for a slope of 16%](baffle_fishway_mixte_slope_16_.png)
*Abacuses of a mixed / chevron baffles fishway for a slope of 15% (Excerpt from Larinier, 2002[^1])*
......
......@@ -14,15 +14,15 @@ $$ Q^* = \dfrac{Q}{\sqrt{g}L^{2,5}} $$
to upstream head \(ha\) and the average water level in the pass \(h\) :
![Abacuses of a plane baffles (Denil) fishway for a slope of 10%](baffle_fishway_plans_slope_10_.svg)
![Abacuses of a plane baffles (Denil) fishway for a slope of 10%](baffle_fishway_plans_slope_10_.png)
*Abacuses of a plane baffles (Denil) fishway for a slope of 10% (Excerpt from Larinier, 2002[^1])*
![Abacuses of a plane baffles (Denil) fishway for a slope of 15%](baffle_fishway_plans_slope_15_.svg)
![Abacuses of a plane baffles (Denil) fishway for a slope of 15%](baffle_fishway_plans_slope_15_.png)
*Abacuses of a plane baffles (Denil) fishway for a slope of 15% (Excerpt from Larinier, 2002[^1])*
![Abacuses of a plane baffles (Denil) fishway for a slope of 20%](baffle_fishway_plans_slope_20_.svg)
![Abacuses of a plane baffles (Denil) fishway for a slope of 20%](baffle_fishway_plans_slope_20_.png)
*Abacuses of a plane baffles (Denil) fishway for a slope of 20% (Excerpt from Larinier, 2002[^1])*
......
......@@ -12,11 +12,11 @@ $$ q^* = \dfrac{Q/L}{\sqrt{2g}a^{1,5}} $$
to upstream head \(ha\) and the average water level in the pass \(h\) :
![Abacuses of a superactive baffles fishway for a slope of 10%](baffle_fishway_suractif_slope_10_.svg)
![Abacuses of a superactive baffles fishway for a slope of 10%](baffle_fishway_suractif_slope_10_.png)
*Abacuses of a superactive baffles fishway for a slope of 10% (Excerpt from Larinier, 2002[^1])*
![Abacuses of a superactive baffles fishway for a slope of 15%](baffle_fishway_suractif_slope_15_.svg)
![Abacuses of a superactive baffles fishway for a slope of 15%](baffle_fishway_suractif_slope_15_.png)
*Abacuses of a superactive baffles fishway for a slope of 15% (Excerpt from Larinier, 2002[^1])*
......
......@@ -12,7 +12,7 @@ Classical formulation of the free flow weir (\(\mu_F \simeq 0.4\)).
## Weir - submerged flow
(\(h_1 < W\) and \(h_2 \geq \frac{2}{3} h_1\))
\(Q = \mu_S L \sqrt{2g} (h_1-h_2)^{1/2} h_2\)
$$Q = \mu_S L \sqrt{2g} (h_1-h_2)^{1/2} h_2$$
Classical formulation of the submerged weir.
......@@ -51,8 +51,7 @@ There are two formulations depending on whether the orifice is partially submerg
### Totally submerged flow
(\(h_1 \geq W\) and \(\frac{2}{3} h_1 + \frac{W}{3} < h_2\))
\(Q = \mu' L \sqrt{2g} (h_1-h_2)^{1/2} \left[ h_2 - (h_2 - W) \right]
\Rightarrow Q = \mu' L \sqrt{2g} (h_1-h_2)^{1/2} W\)
$$Q = \mu' L \sqrt{2g} (h_1-h_2)^{1/2} \left[ h_2 - (h_2 - W) \right] \Rightarrow Q = \mu' L \sqrt{2g} (h_1-h_2)^{1/2} W$$
Classical formulation of submerged orifices, with \(\mu' = \mu_S\).
......
......@@ -44,6 +44,6 @@ Ballu A., Pineau G., Calluaud D., David L. (2015). Experimental study of the inf
Ballu A. (2017). Étude numérique et expérimentale de l’écoulement turbulent au sein des passes à poissons à fentes verticales. Analyse de l’écoulement tridimensionnel et instationnaire. *Thèse de l’Université de Poitiers*, 223p.
Ballu A., Calluaud D., Pineau G., david L. (2017). Experimental study of the influence of macroroughnesses on vertical slot fishway flows. *La Houille Blanche*, 2: 9-14.
Ballu A., Calluaud D., Pineau G., david L. (2017). Experimental study of the influence of macro-roughnesses on vertical slot fishway flows. *La Houille Blanche*, 2: 9-14.
Wang R.W., David L., Larinier M. (2010). Contribution of experimental uid mechanics to the design of vertical slot fish passes. *Knowledge and Management of Aquatic Ecosystems*, 396(2).
Wang R.W., David L., Larinier M. (2010). Contribution of experimental fluid mechanics to the design of vertical slot fish passes. *Knowledge and Management of Aquatic Ecosystems*, 396(2).
......@@ -39,6 +39,7 @@ Villemonte proposes the following formula:
$$K = \frac{Q_{submerged}}{Q_{free}} = \left [ 1- \left ( \frac{h2}{h1} \right)^n \right]^{0.385}$$
With:
- \(h_1\) the upstream water level above the weir crest
- \(h_2\) the downstream water level above the weir crest
- \(n\) the exponent in free flow relationships (rectangular=1.5, triangular=2.5, parabolic=2)
......
......@@ -5,7 +5,7 @@
| Weir | Rectangular | Sharp-crested weir (notch) | Free | [Poleni](./seuil_denoye.md) | 0.4 | Parallel structures, free flow weir stage-discharge laws |
| | | Sharp-crested weir (slot) | Submerged | [Rajaratnam](./seuil_noye.md) | 0.9 | Parallel structures |
| | | Sharp-crested weir (slot) | Submerged | [Larinier slot](./fente_noyee.md) | to be defined by designer | Parallel structures, cross walls, downwall |
| | | Sharp-crested weir (notch) | Submerged / free | [Kindsvater-Carter & Villemonte](./kivi.md) | = 0.4; ß = 0.001 | Parallel structures |
| | | Sharp-crested weir (notch) | Submerged / free | [Kindsvater-Carter & Villemonte](./kivi.md) | α = 0.4; ß = 0.001 | Parallel structures |
| | | Sharp-crested weir (notch) | Submerged / free | [Villemonte](./villemonte_1947.md) | 0.4 | Parallel structures, cross walls, downwall |
| | | Sharp-crested regulated weir (notch) | Submerged / free | [Villemonte](./villemonte_1947.md) | 0.4 | Downwall |
| | | Sharp-crested regulated weir (slot) | Submerged | [Larinier slot](./fente_noyee.md) | To be defined by designer | Downwall |
......@@ -22,20 +22,22 @@
Table: Stage-discharge equations list
## Sharp-crested or broad-crested weir ?
## Sharp-crested or broad-crested weir?
Extract from CETMEF, 2005. Note on weirs : synthesis of flow laws at the right of weirs and spillways. Centre d'Études Techniques Maritimes Et Fluviales, Compiègne.
> The type of weir is related to the flow at the right of the structure.
>
> Indeed, the more the breadth of the crest of the weir is negligible compared to the upstream water height above it, the more the weir appears transparent to the flow and thus the sharper the crest of the weir appears.
> The type of weir is related to the flow at the right of the structure.
>
> Indeed, the more the breadth of the crest of the weir is negligible compared to the upstream water height above it, the more the weir appears transparent to the flow and thus the sharper the crest of the weir appears.
>
> On the other hand, the closer the upstream water line is to the weir crest, the greater the width of the weir appears in relation to the breadth of the water flowing over it and therefore the broader the weir crest appears.
> A weir in a river thus belongs to one of the three following categories:
>
> On the other hand, the closer the upstream water line is to the weir crest, the greater the width of the weir appears in relation to the breadth of the water flowing over it and therefore the broader the weir crest appears.
> A weir in a river thus belongs to one of the three following categories:
> - sharp-crested weir
> - broad-crested weir
> - weir with undefined crest
> - weir with undefined crest
>
> In order to determine the type of weir studied, the following conditions must be verified:
>
> - if $C < \frac{H_1}{2}$, then the threshold is sharp-crested;
> - if $C > \frac{2H_1}{3}$, then the threshold is broad-crested.
# Crossability verification
## Warning
The purpose of this tool is to carry out a simple check of the compatibility
between certain fish pass sizing criteria and the passage capacities of the
target fish species.
It may prove useful during the design phase of a facility to ensure that the
proposed design is consistent with its hydrological operating range.
However, this tool is not sufficient to fully verify the functionality of a
planned or existing system, insofar as other important dimensional and
hydraulic criteria are not taken into account by this module
(feed flow rate and characteristics of the fish intake in terms of attractiveness,
and depending on the type of system: basin aspect ratio,
concentration of macro-roughness, bottom roughness, size of baffles, etc.).
This module allows to verify the capacity of different fish species to cross the following types of fish passes:
- [fish ladders](pab.md)
......
......@@ -19,7 +19,7 @@ Offline versions are available for the Windows, Linux, macOS, Android platforms.
## Documentation
Download [documentation in PDF format](https://cassiopee.g-eau.fr/assets/docs/pdf/cassiopee_doc_en.pdf)
Download [documentation in PDF format](../pdf/cassiopee_doc_en.pdf)
Download [illustrated quick start guide (in french) in PDF format](https://cassiopee.g-eau.fr/assets/docs/pdf/cassiopee_notice_illustree_fr.pdf)
......
......@@ -40,10 +40,10 @@ $$
$$
So we have here \(f(y,t)=-ay\). The analytical solution is easily solved, giving \(y(t)=y_0 \exp\left(-a(t-t_0)\right)\).
The problem can be solved by the Euler method:
The problem can be solved by the Euler method:
* we choose \(\Delta t\) (for example, \(\Delta t=1\))
* calculate \( y_1=y_0 - a y_0 \Delta t\)
* calculate \( y_2=y_1 - a y_1 \Delta t\) etc.
* calculate \(y_1=y_0 - a y_0 \Delta t\)
* calculate \(y_2=y_1 - a y_1 \Delta t\) etc.
It can be seen that the resolution is not very precise; this is linked to the calculation step being too large given the method chosen and the equation to be solved.
docs/fr/calculators/devalaison/ge.png

19.5 KiB

......@@ -188,10 +188,6 @@ L'obstruction effective due aux entretoises et éléments de support transversau
### Profil des barreaux
![Profil des barreaux](profil-barreaux.png)
*Raynal, Sylvain. « Étude expérimentale et numérique des grilles ichtyocompatibles ». Sciences et ingénierie en matériaux, mécanique, énergétique et aéronautique - SIMMEA, 2013.*
#### grille conventionnelle
Le coefficient de forme des barreaux \(a\) vaut 2.89 pour le profil rectangulaire (PR) et 1.70 pour le profil hydrodynamique (PH).
......@@ -206,6 +202,7 @@ Le coefficient de forme des barreaux \(c\) vaut 1.69 pour le profil rectangulair
| Forme des barreaux | Droplet | Plétina | Tadpole 8 | Tadpole 10 | Hydrodynamique | Rectangulaire |
| --- | --- | --- | --- | --- | --- | --- |
| | <img src="ge.png" alt="Droplet" style="width:65px;height:289px;"> | <img src="pletina.png" alt="Plétina" style="width:65px;height:289px;"> | <img src="tadpole8.png" alt="Tadpole 8" style="width:65px;height:289px;"> | <img src="tadpole10.png" alt="Tadpole 10" style="width:65px;height:289px;"> | <img src="hydrodynamique.png" alt="Hydrodynamique" style="width:65px;height:289px;"> | <img src="rec.png" alt="Rectangulaire" style="width:65px;height:289px;"> |
| Coefficient de forme $A_i$| 2.47 | 1.75 | 1.27 | 1.79 | 2.10 | 3.85 |
Extrait de Lemkecher et al. (2020)[^4]
......
docs/fr/calculators/devalaison/hydrodynamique.png

20.5 KiB

......@@ -30,7 +30,7 @@ Avec&nbsp;:
- \(g\)&nbsp;: accélération de la gravité = 9.81 m.s-2
- \(D\)&nbsp;: distance horizontale parcourue entre le départ du jet et le point d'impact (m)
- \(\alpha\)&nbsp;: angle de tir par rapport à l'horizontale (°)
- \(\V_0\)&nbsp;: vitesse initiale (m/s)
- \(V_0\)&nbsp;: vitesse initiale (m/s)
### Abscisse de l'impact (distance horizontale parcourue)
......
docs/fr/calculators/devalaison/pletina.png

12.8 KiB