Skip to content
Snippets Groups Projects
Commit fd315ca1 authored by David Dorchies's avatar David Dorchies :zany_face:
Browse files

fix(docs): malformed formulas in latex

Refs #656
parent 0e257b3e
No related branches found
No related tags found
2 merge requests!252release: version 4.18.0,!251Resolve "Documentation PDF: erreurs à la compilation"
Pipeline #163264 passed
This commit is part of merge request !251. Comments created here will be created in the context of that merge request.
......@@ -12,7 +12,7 @@ Classical formulation of the free flow weir (\(\mu_F \simeq 0.4\)).
## Weir - submerged flow
(\(h_1 < W\) and \(h_2 \geq \frac{2}{3} h_1\))
\(Q = \mu_S L \sqrt{2g} (h_1-h_2)^{1/2} h_2\)
$$Q = \mu_S L \sqrt{2g} (h_1-h_2)^{1/2} h_2$$
Classical formulation of the submerged weir.
......@@ -51,8 +51,7 @@ There are two formulations depending on whether the orifice is partially submerg
### Totally submerged flow
(\(h_1 \geq W\) and \(\frac{2}{3} h_1 + \frac{W}{3} < h_2\))
\(Q = \mu' L \sqrt{2g} (h_1-h_2)^{1/2} \left[ h_2 - (h_2 - W) \right]
\Rightarrow Q = \mu' L \sqrt{2g} (h_1-h_2)^{1/2} W\)
$$Q = \mu' L \sqrt{2g} (h_1-h_2)^{1/2} \left[ h_2 - (h_2 - W) \right] \Rightarrow Q = \mu' L \sqrt{2g} (h_1-h_2)^{1/2} W$$
Classical formulation of submerged orifices, with \(\mu' = \mu_S\).
......
......@@ -12,7 +12,7 @@ Formulation classique du déversoir dénoyé (\(\mu_F \simeq 0.4\)).
## Déversoir - régime noyé
(\(h_1 < W\) et \(h_2 \geq \frac{2}{3} h_1\))
\(Q = \mu_S L \sqrt{2g} (h_1-h_2)^{1/2} h_2\)
$$Q = \mu_S L \sqrt{2g} (h_1-h_2)^{1/2} h_2$$
Formulation classique du déversoir noyé.
......@@ -51,8 +51,7 @@ Il existe deux formulations suivant que l’on est partiellement noyé ou totale
### Régime totalement noyé
(\(h_1 \geq W\) et \(\frac{2}{3} h_1 + \frac{W}{3} < h_2\))
\(Q = \mu' L \sqrt{2g} (h_1-h_2)^{1/2} \left[ h_2 - (h_2 - W) \right]
\Rightarrow Q = \mu' L \sqrt{2g} (h_1-h_2)^{1/2} W\)
$$Q = \mu' L \sqrt{2g} (h_1-h_2)^{1/2} \left[ h_2 - (h_2 - W) \right] \Rightarrow Q = \mu' L \sqrt{2g} (h_1-h_2)^{1/2} W$$
Formulation classique des orifices noyés, avec \(\mu' = \mu_S\).
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment