Skip to content
Snippets Groups Projects
Commit 20cbce27 authored by David Dorchies's avatar David Dorchies Committed by mathias.chouet
Browse files

Fix #321

parent 08142296
No related branches found
No related tags found
1 merge request!70Resolve "Ajouter la documentation utilisateur en anglais"
Showing
with 137 additions and 166 deletions
# Foreword
For fish passes, the CASSIOPEE software should be considered as a tool to assist in the design of fish passes.
Its user must be perfectly familiar with the technique of sizing fish passes.
In the process of developing a fish pass, the role of CASSIOPEE is to calculate
certain quantities characterizing its operation and to present the results in a clear, concise and friendly manner.
It obviously cannot answer the problem of optimizing the location of the structure on the
site.
It is advisable for the user to check that the project developed responds to the problem and that all
the conditions ensuring its crossability are met.
Under no circumstances can the AFB or Irstea be held responsible for any malfunction of a project designed using CASSIOPEE.
# Calculation of the pressure drop on a water intake grid
# Calculation of the head loss on a water intake grid
<div style="position: relative"><a id="grille-conventionnelle" style="position: absolute; top: -60px;"></a></div>
## Conventional grid
Conventional grid planes: perpendicular to the flow and slightly inclined to the horizontal
#### Formula
### Formula
Use of the F1 formula of Raynal et al (2012) to calculate the pressure drops.
Use of the F1 formula of Raynal et al (2012) to calculate the head losses.
$$\xi = K_F * K_O * K_\beta = a * \left ( \frac{O}{1-O} \right )^{1.6} * \left ( 1 - \cos{\beta} \right )^{0.39}$$
......@@ -19,11 +19,11 @@ Flow-oriented and near-vertical grid planes.
![Oriented grid](grille-orientee.jpg)
*Courret, D. and Larinier, M. Guide for the design of ichthyocompatible water intakes for small hydroelectric power plants, 2008. https://doi.org/10.13140/RG.2.1.2359.1449.*
*Courret, D. et Larinier, M. Guide pour la conception de prise d’eau ichtyocompatibles pour les petites centrales hydroélectriques, 2008. <https://doi.org/10.13140/RG.2.1.2359.1449>.*
#### Formula
### Formula
Use of the F2 formula of Raynal et al (2012) to calculate the pressure drops.
Use of the F2 formula of Raynal et al (2012) to calculate the head losses.
$$\xi = K_F * K_O * K_\alpha = a * \left ( \frac{O}{1-O} \right )^{1.6} * \left ( 1 + c * \left ( \frac{90 - \alpha}{90} \right )^{2.35} * \left ( \frac{1 - O}{O} \right )^{3} \right )$$
......@@ -37,11 +37,11 @@ Grid planes perpendicular to the flow, and inclined with respect to the horizont
![Inclined grid](grille-inclinee-b.jpg)
*Courret, D. and Larinier, M. Guide for the design of ichthyocompatible water intakes for small hydroelectric power plants, 2008. https://doi.org/10.13140/RG.2.1.2359.1449.*
*Courret, D. et Larinier, M. Guide pour la conception de prise d’eau ichtyocompatibles pour les petites centrales hydroélectriques, 2008. <https://doi.org/10.13140/RG.2.1.2359.1449>.*
#### Formula
### Formula
Use of the F3 formula of Raynal et al (2012) to calculate the pressure drops.
Use of the F3 formula of Raynal et al (2012) to calculate the head losses.
$$\xi = K_{F, b} * K_b * K_\beta + K_{Fent} * K_{entH} = a * \left ( \frac{O_b}{1-O_b} \right )^{1.65} * \left ( \sin \beta \right )^{2} + c * \left ( \frac{O_{entH}}{1-O_{entH}} \right )^{0.77}$$
......@@ -50,137 +50,137 @@ $$\xi = K_{F, b} * K_b * K_\beta + K_{Fent} * K_{entH} = a * \left ( \frac{O_b}{
## Parameters
<div style="position: relative"><a id="cote-du-sommet-immerge-du-plan-de-grille" style="position: absolute; top: -60px;"></a></div>
#### Elevation of the immersed vertex of the grid plane
### Elevation of the immersed vertex of the grid plane
May be different from the water level if the top of the grid plane is drowned.
<div style="position: relative"><a id="largeur-de-la-section" style="position: absolute; top: -60px;"></a></div>
#### Section width
### Section width
###### Conventional or inclined grid
#### Conventional or inclined grid
Must also correspond to the width of the grid plane.
<div style="position: relative"><a id="vitesse-dapproche-moyenne-pour-le-debit-maximum-turbine-en-soustrayant-la-partie-superieure-eventuellement-obturee" style="position: absolute; top: -60px;"></a></div>
#### Average approach speed for the maximum turbinated flow, subtracting the upper part, if any, blocked
### Average approach speed for the maximum turbinated flow, subtracting the upper part, if any, blocked
"Maximum" value of the approach speed taken into account in the calculation of the pressure drop in a safety approach.
"Maximum" value of the approach speed taken into account in the calculation of the head loss in a safety approach.
<div style="position: relative"><a id="inclinaison-par-rapport-a-lhorizontale" style="position: absolute; top: -60px;"></a></div>
#### Inclination with respect to the horizontal
### Inclination with respect to the horizontal
###### Conventional grid
#### Conventional grid
Scope of the formula: 45 ≤ β ≤ 90°
###### Oriented grid
#### Oriented grid
Vertical grid planes (β = 90°).
The slight inclination of the grid planes (β≈ 75/80°), often set up for screening purposes, can be neglected.
###### inclined grid
#### inclined grid
Scope of the formula: 15° ≤ β ≤ 90°
Recommended for fish guidance: β ≤ 26°
<div style="position: relative"><a id="orientation-par-rapport-a-la-direction-de-lecoulement" style="position: absolute; top: -60px;"></a></div>
#### Orientation with respect to the direction of flow
### Orientation with respect to the direction of flow
###### Conventional grid
#### Conventional grid
Grid planes perpendicular to the flow (α = 90°)
###### Oriented grid
#### Oriented grid
Scope of the formula: 30° ≤ α ≤ 90°
Recommended for fish guidance: α ≤ 45°
###### inclined grid
#### inclined grid
Grid planes perpendicular to the flow (α = 90°)
<div style="position: relative"><a id="vitesse-normale-moyenne-pour-le-debit-maximum-turbine" style="position: absolute; top: -60px;"></a></div>
#### Average normal speed for maximum turbinated flow rate
### Average normal speed for maximum turbinated flow rate
###### Conventional grid
#### Conventional grid
Recommended to avoid plating fish on the grid plane (physical barrier) or their premature passage through (behavioural barrier): VN ≤ 0.5 m/s.
###### Oriented or inclined grid
#### Oriented or inclined grid
Recommended to avoid plating fish on the grid plane (physical barrier) or their premature passage through (behavioural barrier): VN ≤ 0.5 m/s.
Above the average value calculated here, it is essential to refer to the recommendations derived from the experimental characterization of the actual velocity values.
<div style="position: relative"><a id="rapport-de-forme-des-barreaux" style="position: absolute; top: -60px;"></a></div>
#### Bar shape ratio
### Bar shape ratio
###### Oriented grid
#### Oriented grid
Validity range of the formula: ratio b / p close to 0.125
<div style="position: relative"><a id="rapport-espacementepaisseur-des-barreaux" style="position: absolute; top: -60px;"></a></div>
#### Ratio of spacing / bar thickness
### Ratio of spacing / bar thickness
###### Oriented grid
#### Oriented grid
Scope of validity of the formula: 1 ≤ e / b ≤ 3
<div style="position: relative"><a id="obstruction-globale-du-plan-de-grille-barreaux-entretoises-elements-de-supports-longitudinaux-et-transversaux-retenue" style="position: absolute; top: -60px;"></a></div>
#### Overall obstruction of the grid plane (bars + spacers + longitudinal and transverse support elements) retained
### Overall obstruction of the grid plane (bars + spacers + longitudinal and transverse support elements) retained
To be determined from the grid plans.
###### Conventional grid
#### Conventional grid
Scope of validity of the formula: 0.2 ≤ O ≤ 0.60
###### Oriented grid
#### Oriented grid
Scope of the formula: 0.35 ≤ O ≤ 0.60
###### inclined grid
#### inclined grid
Obstruction due to the bars and longitudinal support elements retained \(O_b\). To be determined from the grid plans.
Scope of validity of the formula: 0.28 ≤ Ob ≤ 0.53
<div style="position: relative"><a id="profil-des-barreaux" style="position: absolute; top: -60px;"></a></div>
#### Bars profile
### Bar profile
![Bar profile](bar profile.png)
![Bar profile](profil-barreaux.png)
*Raynal, Sylvain. "Experimental and numerical study of ichthyocompatible grids". Materials science and engineering, mechanics, energy and aeronautics - SIMMEA, 2013.*
*Raynal, Sylvain. « Étude expérimentale et numérique des grilles ichtyocompatibles ». Sciences et ingénierie en matériaux, mécanique, énergétique et aéronautique - SIMMEA, 2013.*
###### Conventional grid
#### Conventional grid
The shape coefficient of the bars \(a\) is 2.89 for the rectangular profile (PR) and 1.70 for the hydrodynamic profile (PH).
###### Oriented grid
#### Oriented grid
The shape coefficient of the bars is 2.89 for the rectangular profile (PR) and 1.70 for the hydrodynamic profile (PH).
The shape coefficient of the bars \(c\) is 1.69 for the rectangular profile (PR) and 2.78 for the hydrodynamic profile (PH).
###### inclined grid
#### inclined grid
The shape coefficient of the bars \(a\) is 3.85 for the rectangular profile (PR) and 2.10 for the hydrodynamic profile (PH).
<div style="position: relative"><a id="obstruction-effective-due-aux-entretoises-et-elements-de-support-transversaux-rapportee-a-la-section-decoulement" style="position: absolute; top: -60px;"></a></div>
#### Effective obstruction due to spacers and transverse support elements in relation to the flow cross-section
### Effective obstruction due to spacers and transverse support elements in relation to the flow cross-section
###### inclined grid
#### inclined grid
To be determined from the grid plans.
Scope of the formula: OentH ≤ 0.28
<div style="position: relative"><a id="coefficient-de-forme-moyen-des-entretoises-et-elements-transversaux-ponderes-selon-leurs-parts-respectives" style="position: absolute; top: -60px;"></a></div>
#### Average shape coefficient of spacers and transverse elements, weighted according to their respective shares
### Average shape coefficient of spacers and transverse elements, weighted according to their respective shares
###### inclined grid
#### inclined grid
To be determined from the grid plans.
This is the case, for example, for 1.79 for cylindrical spacers, 2.42 for rectangular spacers, and around 4 for square beams and IPNs.
For example, 1.79 for cylindrical spacers, 2.42 for rectangular spacers, and around 4 for square beams and IPNs.
......@@ -4,7 +4,7 @@ The downstream fish evacuation outlet ends with a device that empties into the p
Excerpt from Courret, Dominique, and Michel Larinier. Guide for the design of ichthyocompatible water intakes for small hydroelectric power plants, 2008. https://doi.org/10.13140/RG.2.1.2359.1449, p.24:
> Speeds in the structure and at the point of impact in the tailbay must remain below about 10 m/s, with some organizations even recommending that they not exceed 7-8 m/s (ASCE 1995). (...) The head between the outlet and the water body must not exceed a dozen metres to avoid any risk of injury to fish on impact, whatever their size and mode of fall (free fall or fall in the water vein) (Larinier and Travade 2002). The discharge must also be made in an area of sufficient depth to avoid any risk of injury from mechanical shock. Odeh and Orvis (1998) recommend a minimum depth of about a quarter of the fall, with a minimum of about 1 m.
> Speeds in the structure and at the point of impact in the tailrace must remain below about 10 m/s, with some organizations even recommending that they not exceed 7-8 m/s (ASCE 1995). (...) The head between the outlet and the water body must not exceed a dozen metres to avoid any risk of injury to fish on impact, whatever their size and mode of fall (free fall or fall in the water vein) (Larinier and Travade 2002). The discharge must also be made in an area of sufficient depth to avoid any risk of injury from mechanical shock. Odeh and Orvis (1998) recommend a minimum depth of about a quarter of the fall, with a minimum of about 1 m.
## Formula
......@@ -14,7 +14,7 @@ With \(g\): gravity acceleration = 9.81 m.s-2
$$H = 0.5 * g * \frac{D^{2}}{\cos \alpha^{2} * V_0^{2}} - \tan \alpha * D$$
### Impact abscissa (distance covered)
### Impact abscissa (horizontal distance covered)
$$D = \frac{V_0}{g * \cos \alpha} \left ( V_0 * \sin \alpha + \sqrt{ \left ( V_0 * \sin \alpha \right )^{2} + 2 * g * H } \right )$$
......@@ -32,4 +32,4 @@ $$V_z = V_0 \sin \alpha - t * g$$
### Speed at impact
$$V_t = \sqrt{ \frac{V_x^{2}}{V_z^{2}} }$$
$$V_t = \sqrt{ \V_x^{2} + V_z^{2} }$$
......@@ -39,4 +39,4 @@ If we take the example of a rectangular channel, [the proposed scilab code examp
y0=0.12;
```
which gives us the normal depth, and the water line. Depending on the numerical method used, we can have large errors in the case of an F2 eddy curve (downstream condition below normal height), because the waterline slopes are much steeper, and therefore much more prone to errors related to linear interpolation. We can therefore deduce that on the one hand the choice of the resolution method is important, and on the other hand it is essential to take a critical look at the solutions (with an interpretation of the processes we are trying to model).
which gives us the normal depth, and the water line. Depending on the numerical method used, we can have large errors in the case of an F2 backwater curve (downstream condition below normal height), because the waterline slopes are much steeper, and therefore much more prone to errors related to linear interpolation. We can therefore deduce that on the one hand the choice of the resolution method is important, and on the other hand it is essential to take a critical look at the solutions (with an interpretation of the processes we are trying to model).
......@@ -27,7 +27,7 @@ The calculated hydraulic quantities are:
- Conjugate depth
- Tractive force (Pa)
## Width at mirror,wet perimeter and surface
## Width at mirror, wet perimeter and surface
[See the dedicated page for the parameters specific to each type of section](types_sections.md)
......
......@@ -3,20 +3,20 @@
This tool, which is similar to the [Parallel Structures](../structures/lois_ouvrages.md) tool, is an aid to the hydraulic pre-dimensioning of a fish pass: it
is most often used for the dimensioning of notches, slots, orifices, etc.
characterizing the walls of a pass as well as for the setting in altitude of the notches,
cracks and invert of the upstream basin of a pass.
slots and apron of the upstream basin of a pass.
It allows to calculate the missing value of the 7 values characterizing the fall, the surface
of the countersunk hole, the width of the slot, the load on the slot, the width of the notch,
of the submerged orifice, the width of the slot, the load on the slot, the width of the notch,
the load on the notch and the flow rate.
Mandatory data to be provided are the dimensions of the basins (width and length) and the
average draught in metres. These data associated with the fall between basins allow us to calculate [the dissipated power density](volume.md).
average draught in metres. These data associated with the fall between basins allow us to calculate [the power dissipation](volume.md).
Once the partition is calculated, the tool proposes to create a basin pass from this partition by specifying the upstream dimension of the water, the number of falls and the downstream dimension of the water in the pass.
Once the module is calculated, the tool proposes to create a basin pass from this cross wall by specifying the upstream water elevation, the number of falls in the pass and the downstream water elevation.
## Hydraulic structures that can be part of the cross wall
The tool allows you to place one or more works in parallel among the following types of works:
The tool allows you to place one or more structures in parallel among the following types of structures:
### Submerged orifice
......
......@@ -2,20 +2,20 @@
## General presentation
This module calculates the water line of a fish ladder with successive basins. Two calculation possibilities are offered: calculation of the inflow into the channel with the upstream and downstream water level, calculation of the upstream water level with the inflow into the channel.
This module calculates the water line of a fish ladder with successive basins. Two calculation possibilities are offered: calculation of the inflow into the channel from the upstream and downstream water levels, calculation of the upstream water level from the inflow into the channel and the downstream water level.
The creation of a channel can be done from scratch or from a partition model created with the [Cross walls tool](cloisons.md).
The creation of a channel can be done from scratch or from a wall model created with the [Cross walls tool](cloisons.md).
Pass input parameters are divided into two steps:
Input parameters are divided into two steps:
- The hydraulic parameters which include the boundary conditions (water level upstream and downstream of the fishway) and the inflow into the fishway.
- The parameters of the basins, which include the geometry of the basins and the parameters of the hydraulic structures constituting the bulkheads.
- The hydraulic parameters which include the boundary conditions (water level upstream and downstream of the fish ladder) and the inflow into the fish ladder.
- The parameters of the basins, which include the geometry of the basins and the parameters of the hydraulic structures constituting the walls.
It is possible to vary one or two hydraulic parameters so as to obtain a series of results for several boundary conditions or flows.
## Input of the pass geometry
The geometry table has a line for each basin and a final line to describe the downstream bulkhead. For each basin, the parameters present are
The geometry table has a line for each basin and a final line to describe the downstream wall. For each basin, the parameters present are
- length of the basin (m)
- basin width (m)
......@@ -23,19 +23,19 @@ The geometry table has a line for each basin and a final line to describe the do
- Mid-basin invert rating (m)
- Upstream invert elevation (m)
To these are added the parameters of the works of the upstream partition of the basin.
To these are added the parameters of the structures of the upstream wall of each basin.
### Modification of the pass structure
The structure of the pass, i.e. the number of basins or the number of structures in a partition can be changed using the toolbar at the top right of the table:
The structure of the pass, i.e. the number of basins or the number of structures in a wall can be changed using the toolbar at the top right of the table:
![Edit toolbar for the geometry of the pass](pab_barre_outils_edition.png)
This bar is activated when you select:
- a basin (which includes its upstream partition) or the downstream partition by clicking on the first column of a row
- a work by clicking on an uneditable cell of a work in a partition
- all works in a column of the table by clicking on the header of the column to be selected
- a basin (which includes its upstream wall) or the downstream wall by clicking on the first column of a row
- a structure by clicking on an uneditable cell of a structure in a wall
- all structures in a column of the table by clicking on the header of the column to be selected
It is also possible to expand an existing selection by pressing the [Ctrl] key to add a new item to the selection, or by pressing the [Shift] key to expand the selection between two rows or two columns.
......@@ -43,45 +43,45 @@ Depending on the elements selected in the table, the toolbar indicates whether t
The toolbar consists of the following buttons:
1. Number of ponds or structures to be added or duplicated
1. Add *n* ponds or *n* structures with *n* the number indicated on the first button.
1. Duplicate *n* ponds or *n* structures with *n* the number indicated on the first button.
1. Number of basins or structures to be added or duplicated
1. Add *n* basins or *n* structures with *n* the number indicated on the first button.
1. Duplicate *n* basins or *n* structures with *n* the number indicated on the first button.
1. Delete selected basins or structures
1. 1. Move the selected pools (or structures) upwards (or to the left).
1. 1. Move the selected basins (or structures) downwards (or to the right).
### Advanced modification of the pass geometry
The selection of basins or structures gives access to a button "Modify values# which allows to modify a parameter among all the variables of the selected cells in the geometry table.
The selection of basins or structures gives access to a button "Modify values" which allows to modify a parameter among all the variables of the selected cells in the geometry table.
For this variable to be modified, one can
For this variable to be modified, one can:
- define a fixed value;
- apply a delta;
- calculate an interpolation between the basin selected upstream and downstream.
### The downstream partition
### The downstream wall
The downstream bulkhead, in addition to the laws of works available on the bulkheads, allows the use of a "lift gate" in the form of two laws:
The downstream wall, in addition to the laws of structures available on the walls, allows the use of a "lift gate" in the form of two laws:
- Regulated opening (Villemonte 1957);
- Regulated flooded slot (Larinier 1992).
- Regulated notch (Villemonte 1957);
- Regulated submerged slot (Larinier 1992).
The lift gate is a structure where the crest of the weir is regulated to maintain a setpoint waterfall between the last basin and the downstream watercourse. In addition to the conventional parameters of the flow laws, it includes:
The lift gate is a structure where the crest of the weir is regulated to maintain a setpoint waterfall between the last basin and the downstream water level. In addition to the conventional parameters of the flow laws, it includes:
- a *DH* setpoint waterfall (m)
- a minimum rating of the crest of the threshold *minZDV* (m);
- a maximum threshold peak value *maxZDV* (m);
- a minimum crest elevation *minZDV* (m);
- a maximum crest elevation *maxZDV* (m);
During the calculation, if the calculated limit value for the limit value peak is less than *minZDV* (or greater than *maxZDV*), the limit value is locked at *minZDV* (or *maxZDV*) and a warning appears in the calculation logbook.
During the calculation, if the calculated crest elevation is less than *minZDV* (resp. greater than *maxZDV*), the value is locked at *minZDV* (resp. *maxZDV*) and a warning appears in the calculation log.
## Calculation results
The results are presented in the form of a summary table of hydraulic calculations for all basins and bulkheads. It contains all the data calculated by the modules [Cross walls](cloisons.md) and [Power dissipation](volume.md).
The results are presented in the form of a summary table of hydraulic calculations for all basins and walls. It contains all the data calculated by the modules [Cross walls](cloisons.md) and [Power dissipation](volume.md).
Two graphs are present:
- A profile along the channel with the invert elevation of the basins and the water elevation in each basin.
- A profile along the channel with the apron elevation of the basins and the water elevation in each basin.
- A general graph allowing the selection of any parameter from the result table in abscissa and ordinate.
If several results are available due to the variation of one or two hydraulic parameters of the pass, all calculated water lines are displayed in the long profile, and a drop-down list allows to select the result to be displayed in the generalist table and graph.
......@@ -4,13 +4,13 @@ This calculation module allows to calculate the flow passing through a rock-ramp
## General characteristics
The parameters to be entered are the same as for [the so-called "simple" macro-roughness pass](macrorugo.md). Concerning the raft of the pass two choices are offered:
The parameters to be entered are the same as for [the so-called "simple" macro-roughness pass](macrorugo.md). Concerning the apron of the pass two choices are offered:
- Multiple floors: it is possible to create, duplicate, delete, change the order of as many floors as necessary. For each invert, the parameters to be entered are: the width of the invert and the dimension of the invert upstream of the pass.
- Multiple aprons: it is possible to create, duplicate, delete, change the order of as many aprons as necessary. For each apron, the parameters to be entered are: the width of the apron and the dimension of the apron upstream of the pass.
- The inclined apron: in addition to the width of the apron, the right and left sides of the apron must be entered upstream of the pass.
The calculated data are the same as for [the so-called "simple" macro-roughness pass](macrorugo.md). The results display the different data for each invert and the graph allows you to view this data for each invert (transverse profile). In the event that at least one of the calculation parameters varies, the results are available individually via a drop-down list.
The calculated data are the same as for [the so-called "simple" macro-roughness pass](macrorugo.md). The results display the different data for each apron and the graph allows you to view this data for each apron (transverse profile). In the event that at least one of the calculation parameters varies, the results are available individually via a drop-down list.
## Inclined invert case
## Inclined apron case
The calculation of an inclined invert pass consists in discretizing the pass into several horizontal inverts. The width of the created inverts is fixed at the distance to the distance between two blocks with an adjustment of the two inverts at the ends to obtain the total width of the pass. It is possible to edit the created inverts by selecting "Multiple inverts" after performing a calculation with an inclined invert.
The calculation of an inclined apron pass consists in discretizing the pass into several horizontal aprons. The width of the created aprons is fixed at the distance between two blocks with an adjustment of the uppest apron to obtain the total width of the pass. It is possible to edit the created aprons by selecting "Multiple aprons" after performing a calculation with an inclined apron.
# Calculation of the flow rate of a rock-ramp pass
The calculation of the flow rate of a rock-ramp pass corresponds to the implementation of the algorithm and the equations present in
*Cassan L, Laurens P. 2016. Design of emergent and submerged rock-ramp fish passes. Knowl. Manag. Aquat. Ecosyst. 417, 45*.
*Cassan L, Laurens P. 2016. Design of emergent and submerged rock-ramp fish passes. Knowl. Manag. Aquat. Ecosyst. 417, 45, <https://doi.org/10.1051/kmae/2016032>*.
## General calculation principle
The boundary between the emergent and submerged case is at \(h = 1.1 \times k\).
There are three possibilities:
- the submerged case when \(h \ge 1.1 \times k\)
- the emergent case when \(h \le k\)
- the quasi-emergent case when \(k < h < 1.1 \times k\)
In the quasi-emergent case, the calculation of the flow corresponds to a transition between emergent and submerged case formulas:
$$Q = a \times Q_{submerge} + (1 - a) \times Q_{emergent}$$
with \(a = \dfrac{h / k - 1}{1.1 - 1}\)
## Submerged case
......
# Free flow weir stage-discharge laws
This calculation module is similar to that of the [Parallel structures](lois_ouvrages.md), except that it simulates only free flows and can be refined by using the upstream approach speed.
This calculation module is similar to that of the [Parallel structures](lois_ouvrages.md), except that it simulates only free flows and refine by using the upstream approach speed.
It can be used to calculate the relationship between water level upstream of a weir and flow. It is
most often used to assess the upstream-flow rating relationship at a weir or structure
......
......@@ -2,33 +2,33 @@
## Description of the calculation module
This calculation module allows to simulate the hydraulic operation of valves and thresholds placed in parallel. All the flow laws present in Cassiopeia are grouped in this module, which makes it possible in particular to easily compare the flow laws between them.
This calculation module allows to simulate the hydraulic operation of valves and thresholds placed in parallel. All the flow laws present in Cassiopée are grouped in this module, which makes it possible in particular to easily compare the flow laws between them.
This module allows to calculate any missing parameter among them:
This module allows to calculate any missing parameter among them:
- Boundary conditions (water level upstream and downstream of the structures);
- The flow through the structures;
- Parameters of the structures (crest elevation, width, flow coefficient...).
- Boundary conditions (water level upstream and downstream of the structures);
- The flow through the structures;
- Parameters of the structures (crest elevation, width, flow coefficient...).
The module calculates the requested parameter and displays for each structure present:
The module calculates the requested parameter and displays for each structure present:
- The flow passing through the structure;
- The type of flow: under load (flow pinched under a gate), or free surface;
- The speed: flooded, partially flooded or dewatered;
- The type of jet for free surface flows: surface or submerged.
- The flow passing through the structure;
- The type of flow: under load (flow pinched under a gate), or free surface;
- The speed: flooded, partially flooded or dewatered;
- The type of jet for free surface flows: surface or submerged.
<div style="position: relative"><a id="type-de-jet" style="position: absolute; top: -60px;"></a></div>
## Jet type
## Jet type
For the definition of the type of jet (plunging or surface), see: Larinier, M., 1992. Successive basin transitions, pre-dams and artificial rivers. Bulletin Français de la Pêche et de la Pisciculture 45-72. <https://doi.org/10.1051/kmae:1992005>.
For the definition of the type of jet (plunging or surface), see: Larinier, M., 1992. Successive basin transitions, pre-dams and artificial rivers. Bulletin Français de la Pêche et de la Pisciculture 45-72. <https://doi.org/10.1051/kmae:1992005>.
![Diagram of jet type](type_de_jet.png)
![Diagram of jet type](type_de_jet.png)
*Excerpt from Larinier, M., 1992. Passages to successive basins, pre-dams and artificial rivers. Bulletin Français de la Pêche et de la Pisciculture 45-72. <https://doi.org/10.1051/kmae:1992005>*
The definition used in Cassiopée is as follows:
The definition used in Cassiopée is as follows:
- if \(DH \geq 0.5 H1\) then the jet is plunging;
- if \(DH < 0.5 H1\) then the jet is surface.
- if \(DH \geq 0.5 H1\) then the jet is plunging;
- if \(DH < 0.5 H1\) then the jet is surface.
With \(H1\), the load upstream of the weir and \(DH\) the pressure drop across the weir.
With \(H1\), the upstream head over the weir and \(DH\) the head drop across the weir.
......@@ -2,11 +2,12 @@
Accessible from the left side menu, the application parameters that can be modified by the user are as follows:
- Number of decimal places displayed: Number of decimal places displayed for the calculation results. For numbers close to zero displayed in scientific notation, this option sets the number of significant digits displayed;
- Calculation accuracy: Precision used for the convergence of numerical calculations ([Brent's method](https://en.wikipedia.org/wiki/Brent%27s_method) or [Newton's method](https://en.wikipedia.org/wiki/Newton's_method));
- Number of iterations of the Newton's algorithm;
- Number of displayed decimals: Number of displayed decimals for the calculation results. For numbers close to zero displayed in scientific notation, this option sets the number of significant digits displayed;
- Computation accuracy: Precision used for the convergence of numerical calculations ([Brent's method](https://en.wikipedia.org/wiki/Brent%27s_method) or [Newton's method](https://en.wikipedia.org/wiki/Newton's_method));
- Solver iteration limit: Maximum iteration number of the numerical calculation;
- Enable on-screen notifications: allows notifications to be displayed during certain operations (warning when loading a session, calculation invalidation...);
- Enable keyboard shortcuts: allows the use of keyboard shortcuts (See [list of available shortcuts](raccourcis_clavier.md));
- Create new calculators with empty fields (no default values): if unchecked, module parameters are pre-filled with default values;
- Language: defines the language of the software interfaces in French or English.
The save button at the top of the window allows you to save the user's preferences in your browser for future use. The "Reset" button restores the application's default settings.
......@@ -16,11 +16,11 @@ The module is presented as a series of parameters involved in solving the equati
![Parameters of the module for calculating the fall of a basin pass](principe_fonctionnement_grandeurs.png)
For each of them, the user can choose:
For each of them, the user can choose to:
- Set the parameter's value ("FIXED" button);
- Vary the parameter to perform a series of calculations ("VARIATED" button)
- Choose the parameter that will be calculated ("CALCULATE" button);
- Vary the parameter to perform a series of calculations ("VARIATED" button);
- Choose the parameter that will be calculated ("CALCULATE" button).
The interface is designed so that one and only one parameter is chosen for the calculation. Parameters that cannot be calculated do not have a "CALCULATE" button.
......@@ -34,9 +34,9 @@ Or for a list of defined values:
![Defining a list of values for a parameter to be varied](principe_fonctionnement_varie_liste.png)
Importing a values list is done either by typing or copy/pasting in the "Values list" field, or by importing a text file. The decimal separator is configurable. Any character outside the numeric characters, the letter "E" and the decimal separator will be considered as separator between the values. The separator could be the comma, the semicolon, the space, the tabulation, the carriage return...
Importing a values list is done either by typing or copy/pasting it in the "Values list" field, or by importing a text file. The decimal separator is configurable. Any character outside the numeric characters, the letter "E" and the decimal separator will be considered as separator between the values. Therefore, the separator could be comma, semicolon, space, tabulation, new line...
The window title contains the corresponding number of occurrences. Clicking on the graphic logo to the right of the window title displays a chart of the parameter variations.
The window title contains the corresponding number of occurrences. Clicking on the graphic logo at the right of the window title displays a chart of the parameter variations.
In case several parameters vary and they do not have the same number of occurrences, it is necessary to define a strategy to extend the shortest lists to fit the list of the parameter with the most occurrences. Two strategies are available: repeat the last value or reuse the values in the list since the first occurrence.
......@@ -64,4 +64,4 @@ The tables and charts are provided with different functionalities:
- a download button to retrieve the chart in PNG format;
- a button to display the table or chart in full screen.
The charts are zoomed in by making a mouse selection on some area. The button with the curved left-pointing arrow resets the zoom to its original value displaying all available values.
The charts are zoomed in by making a mouse selection on some area. The button with the curved left-pointing arrow resets the zoom to its original position displaying all available values.
......@@ -4,13 +4,11 @@
The site cassiopee.g-eau.fr hereinafter referred to as "Cassiopée" is published by [the UMR G-EAU (Mixed Research Unit "Water Management, Actors, Uses")](http://g-eau.fr):
> Irstea<br/>
> Centre of Montpellier<br/>
> 361 Jean-François Breton Street<br/>
> UMR G-EAU<br/>
> 361 rue Jean-François Breton<br/>
> BP 5095<br/>
> 34196 Montpellier Cedex 5<br/>
> France
> Tel: +33 (0) 4 67 04 63 00
Director of publication: Olivier Barreteau, Director of the UMR G-EAU
......@@ -23,10 +21,8 @@ Cassiopée is a tool proposed by [AFB (French Agency for Biodiversity)](https://
## Hosting
> Irstea<br/>
> Centre of Montpellier<br/>
> Information Systems Department<br/>
> 361 Jean-François Breton Street<br/>
> UMR G-EAU<br/>
> 361 rue Jean-François Breton<br/>
> BP 5095<br/>
> 34196 Montpellier Cedex 5<br/>
> France
......@@ -85,7 +81,7 @@ The brands and logos appearing on the site make it possible to inform as to the
The content produced by Cassiopée (calculation results, tables, graphs, etc.) can be reused and distributed on any medium without any limitation.
Cassiopée's documentation is published under[CC BY-NC-ND 4.0 License](https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.fr) which authorizes to copy, distribute, communicate all or part of the documentation by any means and in any format provided that it is credited, that a link to the license is included, that it is not used commercially, and that it is not modified.
Cassiopée's documentation is published under[CC BY-NC-ND 4.0 License](https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode) which authorizes to copy, distribute, communicate all or part of the documentation by any means and in any format under the conditions that it is credited with a link to the license, it is not used commercially, and that it is not modified.
## Free software
......
# Avant-Propos
Concernant les passes à poissons, le logiciel CASSIOPEE doit être considéré comme un outil d'aide à la conception des passes à
poissons.
Son utilisateur doit être parfaitement familier de la technique de dimensionnement des passes à
poissons.
Dans le processus de mise au point d'une passe à poissons, la fonction de CASSIOPEE est de calculer
certaines grandeurs caractérisant son fonctionnement et de présenter les résultats de façon claire et
conviviale.
Il ne peut évidemment répondre au problème de l'optimisation de l'implantation de l'ouvrage sur le
site.
Il convient à l'utilisateur de vérifier que le projet élaboré répond bien au problème posé et que toutes
les conditions assurant sa franchissabilité sont satisfaites.
En aucun cas l'AFB ou Irstea ne pourront être tenus responsables du mauvais fonctionnement
d'un projet dimensionné avec CASSIOPEE.
......@@ -17,7 +17,7 @@ Plans de grille orientés par rapport à l'écoulement et quasi-verticaux.
![Grille orientée](grille-orientee.jpg)
*Courret, D. et Larinier, M. Guide pour la conception de prise d’eau ichtyocompatibles pour les petites centrales hydroélectriques, 2008. https://doi.org/10.13140/RG.2.1.2359.1449.*
*Courret, D. et Larinier, M. Guide pour la conception de prise d’eau ichtyocompatibles pour les petites centrales hydroélectriques, 2008. <https://doi.org/10.13140/RG.2.1.2359.1449>.*
### Formule
......@@ -34,7 +34,7 @@ Plans de grille perpendiculaires à l'écoulement, et inclinés par rapport à l
![Grille inclinée](grille-inclinee-b.jpg)
*Courret, D. et Larinier, M. Guide pour la conception de prise d’eau ichtyocompatibles pour les petites centrales hydroélectriques, 2008. https://doi.org/10.13140/RG.2.1.2359.1449.*
*Courret, D. et Larinier, M. Guide pour la conception de prise d’eau ichtyocompatibles pour les petites centrales hydroélectriques, 2008. <https://doi.org/10.13140/RG.2.1.2359.1449>.*
### Formule
......
......@@ -14,7 +14,7 @@ Avec \(g\)&nbsp;: accélération de la gravité = 9.81 m.s-2
$$H = 0.5 * g * \frac{D^{2}}{\cos \alpha^{2} * V_0^{2}} - \tan \alpha * D$$
### Abscisse de l'impact (distance parcourue)
### Abscisse de l'impact (distance horizontale parcourue)
$$D = \frac{V_0}{g * \cos \alpha} \left ( V_0 * \sin \alpha + \sqrt{ \left ( V_0 * \sin \alpha \right )^{2} + 2 * g * H } \right )$$
......@@ -32,4 +32,4 @@ $$V_z = V_0 \sin \alpha - t * g$$
### Vitesse à l'impact
$$V_t = \sqrt{ \frac{V_x^{2}}{V_z^{2}} }$$
$$V_t = \sqrt{ \V_x^{2} + V_z^{2} }$$
......@@ -52,7 +52,7 @@ La barre d'outils est constituée des boutons suivants&nbsp;:
### Modification avancée de la géométrie de la passe
La sélection des bassins ou des ouvrages donne accès à un bouton "Modifier les valeurs# qui permet de modifier un paramètre parmi toutes les variables des cellules sélectionnées dans le tableau de géométrie.
La sélection des bassins ou des ouvrages donne accès à un bouton "Modifier les valeurs" qui permet de modifier un paramètre parmi toutes les variables des cellules sélectionnées dans le tableau de géométrie.
Pour cette variable à modifier, on pourra&nbsp;:
......
......@@ -13,4 +13,4 @@ Les données calculées sont les mêmes que pour [la passe à macro-rugosité di
## Cas du radier incliné
Le calcul d'une passe à radier incliné consiste à discrétiser la passe en plusieurs radiers horizontaux. La largeur des radiers créés est fixée à la distance à la distance séparant deux blocs avec un ajustement des deux radiers situés aux extrémités pour obtenir la largeur totale de la passe. Il est possible d'éditer les radiers créés en sélectionnant "Radiers multiples" après avoir effectué un calcul avec un radier incliné.
Le calcul d'une passe à radier incliné consiste à discrétiser la passe en plusieurs radiers horizontaux. La largeur des radiers créés est fixée à la distance séparant deux blocs avec un ajustement du radier le plus haut pour obtenir la largeur totale de la passe. Il est possible d'éditer les radiers créés en sélectionnant "Radiers multiples" après avoir effectué un calcul avec un radier incliné.
# Lois de déversoirs dénoyés
Ce module de calcul est similaire à celui des [Lois d'ouvrages](lois_ouvrages.md) à la différence près qu'il ne simule que des écoulements dénoyés et permet d'affiner le calcul en utilisant la vitesse d'approche dans le bief amont.
Ce module de calcul est similaire à celui des [Lois d'ouvrages](lois_ouvrages.md) à la différence près qu'il ne simule que des écoulements dénoyés et affine le calcul en utilisant la vitesse d'approche dans le bief amont.
Il permet de calculer la relation entre le niveau de l'eau à l'amont d'un déversoir et le débit. Il est
utilisé le plus souvent pour évaluer la relation cote amont-débit au niveau d'un seuil ou d'un ouvrage
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment