Newer
Older
# Plane baffles (Denil) fishway

*Excerpt from Larinier, 2002[^1]*
## Hydraulic laws given by abacuses
Experiments conducted by Larinier, 2002[^1] allowed to establish abacuses that link adimensional flow \(Q^*\):
$$ Q^* = \dfrac{Q}{\sqrt{g}L^{2,5}} $$
to upstream head \(ha\) and the average water level in the pass \(h\) :

*Abacuses of a plane baffles (Denil) fishway for a slope of 10% (Excerpt from Larinier, 2002[^1])*

*Abacuses of a plane baffles (Denil) fishway for a slope of 15% (Excerpt from Larinier, 2002[^1])*

*Abacuses of a plane baffles (Denil) fishway for a slope of 20% (Excerpt from Larinier, 2002[^1])*
To run calculations for all slopes between 8% and 22%, polynomes coefficients of abacuses above are themelves adjusted in the form of slope \(S\) depending polynomes.
$$ ha/L = a_2(S) Q^{*2} + a_1(S) Q^* + a_0(S) $$
$$a_2(S) = 315.110S^2 - 115.164S + 6.85371$$
$$a_1(S) = - 184.043S^2 + 59.7073S - 0.530737$$
$$a_0(S) = 15.2115S^2 - 5.22606S + 0.633654$$
$$ h/L = b_2(S) Q^{*2} + b_1(S) Q^* + b_0 $$
$$b_2(S) = 347.368S^2 - 130.698S + 8.14521$$
$$b_1(S) = - 139.382S^2 + 47.2186S + 0.0547598$$
$$b_0(S) = 16.7218S^2 - 6.09624S + 0.834851$$
## Calculation of \(ha\), \(h\) and \(Q\)
We can then use those coefficients to calculate \(ha\), \(h\) and \(Q^*\):
$$ ha = L \left( a_2 (Q^*)^2 + a_1 Q^* + a_0 \right)$$
$$ h = L \left( b_2 (Q^*)^2 + b_1 Q^* + b_0 \right)$$
Using the positive inverse function, depending on \(ha/L\), we get:
$$ Q^* = \dfrac{-a_1 + \sqrt{a_1^2 - 4 a_2 (a_0 - h_a/L)}}{2 a_2}$$
$$ Q = Q^* \sqrt{g} L^{2,5} $$
Calculation limitations of \(Q^*\), \(ha/L\) and \(h/L\) are determined based on the extremities of the abacuses curves.
Flow velocity \(V\) corresponds to the minimum flow speed given the flow section \(A_w\) at the perpendicular of the baffle :
$$ V = \dfrac{Q}{A_w} $$
for plane baffles fishways using the notation of the schema above, we have:
$$ A_w = B \times \left( h - \dfrac{C+D}{2} \sin(45°) \right)$$
Which gives with standard proportions:
$$ A_w = L \left(0.583 h - 0.146L \right) $$
## Upstream apron elevation \(Z_{r1}\)
$$ Z_{r1} = Z_{d1} - D \sin(45° + \arctan(S)) $$
## Minimal rake height of upstream side walls \(Z_m\)
$$ Z_m = Z_{r1} + - H_{min} \sin(45° + \arctan(S)) $$
[^1]: Larinier, M. 2002. “BAFFLE FISHWAYS.” Bulletin Français de La Pêche et de La Pisciculture, no. 364: 83–101. doi:[10.1051/kmae/2002109](https://doi.org/10.1051/kmae/2002109).