... | @@ -26,16 +26,12 @@ Six months before reproduction time for riverine parr or returning time for anad |
... | @@ -26,16 +26,12 @@ Six months before reproduction time for riverine parr or returning time for anad |
|
|
|
|
|
The various thresholds (sex and location dependent) were transmitted by the two parents of a fertilized egg to their progeny according to a bi-allelic multilocus system. Thus, for each threshold, each individual had two branches of 20 loci of 0 (unfavourable) or 1 (favourable) to code for the genetic value. The link between the genetic parameters and their phenotypic expression was controlled by a heritability value (h2). This heritability served to decompose the phenotypic variance of the thresholds between genetic and environmental components at the initialization of the simulations. The environmental variance was then applied on the phenotypic expression of the genetically coded thresholds (pFmid expression of gFmid with environmental noise). No mutations were assumed in the model.
|
|
The various thresholds (sex and location dependent) were transmitted by the two parents of a fertilized egg to their progeny according to a bi-allelic multilocus system. Thus, for each threshold, each individual had two branches of 20 loci of 0 (unfavourable) or 1 (favourable) to code for the genetic value. The link between the genetic parameters and their phenotypic expression was controlled by a heritability value (h2). This heritability served to decompose the phenotypic variance of the thresholds between genetic and environmental components at the initialization of the simulations. The environmental variance was then applied on the phenotypic expression of the genetically coded thresholds (pFmid expression of gFmid with environmental noise). No mutations were assumed in the model.
|
|
|
|
|
|
Fishery mortality on returning individuals was simulated by the removal of a proportion of each sea age class (1SW or MSW, base proportion of 15%) from the population at the end of summer step, that is after the observation of number of returns and proportions of MSW.
|
|
Fishery mortality on returning individuals was simulated by the removal of a proportion of each sea age class (1SW or MSW, base proportion of 15%) from the population at the end of summer step, that is after the observation of number of returns and proportions of MSW. See [fishing](fishing) section.
|
|
|
|
|
|
The reproduction events were simulated according to relevant S. salar literature (Fleming 1996). The mating system allowed mature male parr to fertilize a fraction of the eggs. It selected anadromous males following size dominance while allowing satellite males to fertilize a significant fraction of the eggs. The number of egg per female was size dependent. Egg-to-emergence survival was water temperature, river flow and density dependent.
|
|
The reproduction events were simulated according to relevant S. salar literature (Fleming 1996). The mating system allowed mature male parr to fertilize a fraction of the eggs. It selected anadromous males following size dominance while allowing satellite males to fertilize a significant fraction of the eggs. The number of egg per female was size dependent. Egg-to-emergence survival was water temperature, river flow and density dependent.
|
|
|
|
|
|
|
|
|
|
## Environmental processes
|
|
## Environmental processes
|
|
10. River climate (Water temperature and flow)
|
|
10. [River climate](riverclimate)
|
|
11. Ocean climate
|
|
11. [Ocean climate](oceanclimate)
|
|
|
|
|
|
|
|
|
|
## Fishing
|
|
|
|
|
|
|
|
Changes in life-history traits have been observed in many exploited fish species over past decades. This led to the ‘fisheries-induced evolution’ hypothesis proposing that fisheries may be causing genetic changes to populations through selective harvesting. The submodel [**fishing**](fishing) allows to investigate the relative importance of selective fishing and environmental change scenarios on population. |
|
|
|
\ No newline at end of file |
|
|