Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • svdetection/svlib
1 result
Show changes
Commits on Source (1)
#! /usr/bin/env python
import argparse, sys
import os.path
from math import fabs
import numpy
import pysam
import vcf
from svreader.vcf_utils import get_template
from svreader import SVInter, SVRecord, SVReader
# A small wrapper to print to stderr
def eprint(*args, **kwargs):
print(*args, file=sys.stderr, **kwargs)
class CNVR(SVInter):
'''
CNVR object :
Copy Number Variation Region
'''
def __init__(self,svs):
svinter = next(iter(svs))
start = int(numpy.median(numpy.array([x.start for x in svs])))
end = int(numpy.median(numpy.array([x.end for x in svs])) )
super(CNVR, self).__init__(svinter.chrom,start,end,".")
self.__svs = {x.id:x for x in svs}
self._repr_cnv = self._repr_cnv()
self._bp_precision()
self._CIntervals()
if self._repr_cnv:
eprint(self._repr_cnv.id,"Precise")
self.start = self._repr_cnv.record.pos
self.end = self._repr_cnv.record.info['END']
@property
def svs(self):
return self.__svs
def __str__(self):
return self.chrom+":"+str(self.start)+"-"+str(self.end)+"\t"+self.id+"\t"+str(self.length())
def overlaps(self):
return [ self.svs[s].length()/float(self.length()) for s in sorted(self.svs)]
def intervals(self):
return [ self.svs[s].id for s in sorted(self.svs) ]
def CopyNumbers(self):
svs = self.__svs
cn = []
for sv in svs:
cn.append(svs[sv].CN())
return ",".join(cn)
def NumCNV(self):
return len(self.__svs)
def Callers(self):
callers=list(set([c.split('_')[0] for c in self.__svs]))
return callers
def CallersVsamples(self):
vsamples = []
for caller in self.Callers():
cnv=self.gettoolCNV(caller)
if 'VSAMPLES' in cnv.record.info:
vsamples.append(caller+":"+'-'.join(cnv.record.info['VSAMPLES']))
return vsamples
def NumCallers(self):
return len(set([c.split('_')[0] for c in self.__svs]))
def CNV(self):
return list(self.__svs.keys())
def cipos(self):
return ",".join([str(x) for x in self._cipos])
def ciend(self):
return ",".join([str(x) for x in self._ciend])
def bedformat(self):
return "\t".join(map(str,[self.chrom,self.start,self.end,self.name,len(self.__svs),".",",".join(self.intervals()),",".join(["%0.2f" % x for x in self.overlaps()]),]))
def precision(self):
return self._precision
def IsPrecise(self):
if self._repr_cnv:
return True
else:
return False
def repr_cnv(self):
return self._repr_cnv.record.id
def _bp_precision(self):
# Trying to infer the precision breakpoints according to the the different CNVs merged
svs = self.__svs
#print(self)
#print(svs.keys())
starts = [ svs[x].start for x in svs ]
ends = [ svs[x].end for x in svs ]
start_range = max(starts) - min(starts)
end_range = max(ends) - min(ends)
#print(",".join([ str(svs[x].start) for x in svs]),start_range)
#print(",".join([ str(svs[x].end) for x in svs]),end_range)
self._precision = [start_range,end_range]
def _repr_cnv(self):
'''
Trying to identify a cnv among the cnv of this CNVR that is a representative
either Pindel (more than 10 supp reads), or PRECISE, delly, lumpy or genomeSTRIP
'''
selected = None
if "pindel" in self.Callers():
cnv = self.gettoolCNV("pindel")
if cnv.record.info["SU"][0]>10:
selected = cnv
elif "delly" in self.Callers():
cnv = self.gettoolCNV("delly")
if "PRECISE" in cnv.record.info and cnv.record.info["SR"]>10:
selected = cnv
elif "lumpy" in self.Callers():
cnv = self.gettoolCNV("lumpy")
if not "IMPRECISE" in cnv.record.info and cnv.record.info["SR"][0]>10:
selected = cnv
elif "genomestrip" in self.Callers():
cnv = self.gettoolCNV("genomestrip")
if not "IMPRECISE" in cnv.record.info:
selected = cnv
return selected
def _CIntervals(self):
# Trying to infer CIPOS and CIEND from the called CNVs
# we search for the CNV CIPOS and CIEND from the most confident
# to the least confident SV detection tool
if self._repr_cnv:
self._cipos = self._repr_cnv.record.info['CIPOS']
self._ciend = self._repr_cnv.record.info['CIEND']
return
# default is large confidence interval
self._cipos = (-50,50)
self._ciend = (-50,50)
tools=["genomestrip","lumpy","delly","pindel"]
for tool in tools:
cnv = self.gettoolCNV(tool)
if cnv:
self._cipos = cnv.record.info['CIPOS']
self._ciend = cnv.record.info['CIEND']
break # if a cnv from that tool was found we keep the walues from this call
def gettoolCNV(self,toolname):
cnvs = self.CNV()
# Find CNV made by a specific tool
indices = [i for i,s in enumerate(cnvs) if toolname in s]
if len(indices):
return self.__svs[cnvs[indices[0]]]
else:
return None
def to_vcf_record(cnv):
# Copy numbers
info = {"SVLEN" : cnv.length(), "SVTYPE" : "DEL", "END" : cnv.end, "NB_CNV" : cnv.NumCNV(), "NAMES":cnv.CNV(),"PRECISION":",".join(self._precision)}
alt = [vcf.model._SV("DEL")]
vcf_record = vcf.model._Record(cnv.chrom,
cnv.start,
cnv.name,
"N",
alt,
".",
".",
info,
"",
[0],
[])
return vcf_record
def trim_column_header(vcf_reader):
vcf_reader._column_headers.pop()
def passed_variant(record):
"""Did this variant pass?"""
return record.filter is None or len(record.filter) == 0
def intersect(a,b):
if a.chrom != b.chrom:
return 0
(low,high) = (a,b) if a.start< b.start else (b,a)
intersect = 0
if low.end < high.start: # low << high
intersect = 0
elif low.end > high.end: # low includes high
intersect = high.end - high.start
else: # high.start is within low.start and low.end
intersect = low.end - high.start
return intersect
def roverlap(a,b,cutoff):
'''
Returns true if the two intervals overlap (> cutoff and reciprocally)
'''
inter = intersect(a,b)
if inter:
pa = float(inter)/a.length()
pb = float(inter)/b.length()
else:
pa=0
pb=0
return True if pa >= cutoff and pb >= cutoff else False
def breakpoint_left_precision(a,b):
'''
Returns the precision of the left breakpoint
'''
left_precision = fabs(a.start-b.start)
return left_precision
def breakpoint_right_precision(a,b):
'''
Returns the precision of the right breakpoint
'''
right_precision = fabs(a.end-b.end)
return right_precision
def construct_overlap_graph(data,cutoff,left_precision,right_precision):
'''
Graph construction : add a link whenever two SV overlap
'''
nodes = set()
for i in range(len(data)):
for j in range(i+1,len(data)):
if ( roverlap(data[i],data[j],cutoff) and
breakpoint_left_precision(data[i],data[j]) <= left_precision and
breakpoint_right_precision(data[i],data[j]) <= right_precision ):
#print("%s %s %d %d %d %d %d" % (data[i],data[j],data[i].length(),data[j].length(),intersect(data[i],data[j]),breakpoint_left_precision(data[i],data[j]),breakpoint_right_precision(data[i],data[j])))
data[i].add_link(data[j])
def connected_components(nodes):
'''
Constructing connected component of the graph
input : a set of nodes with linkage information
output : a set of groups, one group for each connected component
'''
# List of connected components found. The order is random.
result = []
# Make a copy of the set, so we can modify it.
nodes = set(nodes)
# Iterate while we still have nodes to process.
while nodes:
n = nodes.pop() # Get a random node and remove it from the global set.
group = {n} # This set will contain the next group of nodes connected to each other.
queue = [n] # Build a queue with this node in it.
# Iterate the queue.
# When it's empty, we finished visiting a group of connected nodes.
while queue:
n = queue.pop(0) # Consume the next item from the queue.
neighbors = n.links # Fetch the neighbors.
neighbors.difference_update(group) # Remove the neighbors we already visited.
nodes.difference_update(neighbors) # Remove the remaining nodes from the global set.
group.update(neighbors) # Add them to the group of connected nodes.
queue.extend(neighbors) # Add them to the queue, so we visit them in the next iterations.
result.append(group) # Add the group to the list of groups.
# Return the list of gimport vcfroups.
return result
# --------------------------------------
# main function
def main():
# parse the command line args
args = get_args()
infiles = args.vcf
prefix = args.prefix
no_index = args.no_index
overlap_cutoff = args.overlap_cutoff
left_precision = args.left_precision
right_precision = args.right_precision
filenames=infiles.split(",")
# Checking the existence of the files
# Reading all the vcf files
SVSet=[]
for infile in filenames:
eprint(" Reading file %s" % (infile))
for record in SVReader(infile):
if not passed_variant(record):
continue
SVSet.append(record)
# Computing connected components according to reciprocal overlaps, left and right precision
# reciprocal overlaps : only SV intervals with reciprocal overlap > = overlap_cutoff are linked
# left, right precision : only SV intervals with left (right) within left_precision are linked
eprint("Constructing conected component")
construct_overlap_graph(SVSet,overlap_cutoff,left_precision,right_precision)
number = 1
cnvr = []
for components in connected_components(SVSet):
names = sorted(node.name for node in components)
names = ", ".join(names)
eprint("Group #%i: %s" % (number, names))
cnv = CNVR(components)
cnvr.append(cnv)
number += 1
# Writing the merge file in a single vcf file
vcf_template_reader = get_template( "merge" )
vcf_writer = vcf.Writer( sys.stdout, vcf_template_reader)
number = 1
prefix_name = prefix.split(".")[0]
for cnv in sorted(cnvr, key=lambda k: k.start):
cnv.name = prefix_name+"_"+str(number)
record = to_vcf_record(cnv)
vcf_writer.write_record(record)
number += 1
vcf_writer.close()
# initialize the script
if __name__ == '__main__':
try:
sys.exit(main())
except:
raise