Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Maintenance - Mise à jour mensuelle Lundi 6 Février entre 7h00 et 9h00
Open sidebar
UMR-ASTRE
mapMCDA
Commits
33230927
Commit
33230927
authored
Jan 23, 2019
by
Facundo Muñoz
®️
Browse files
rasterize() a geographic network
parent
38490390
Changes
4
Hide whitespace changes
Inline
Side-by-side
NAMESPACE
View file @
33230927
...
...
@@ -18,6 +18,7 @@ export(risk_plot)
export(risk_unit)
export(rmext)
export(wlc)
exportMethods(rasterize)
import(deldir)
import(maptools)
import(methods)
...
...
R/network.R
View file @
33230927
...
...
@@ -123,35 +123,74 @@ must be respected:",
return
(
ans
)
}
# ' @import igraph
setOldClass
(
"igraph"
)
#'
Compute the Epidemic Threshold of a graph
#'
Rasterize a geographic network
#'
#'
Weigh
te
d
a
nd unweighted Epidemic Threshold \eqn{q} of a graph
.
#'
Copmu
te a
raster with the importance of the nearest network node
.
#'
#' The Epidemic Threshold \eqn{q} quantifies the minimal expeced transmission
#' coefficient necessary for diffusing an epidemy in a network.
#' It is computed as the inverse of the \emph{Potential for transmission} of
#' the network: a measure of the expected
#' number of nodes affected by an infectious node, which is a generalisation
#' of the Basic Reproduction Number \eqn{R_0}{R₀} of an epidemy to
#' the context of a network. It thus quantifies the potential for
#' transmission of an infection throughout the contact network.
#' It is computed in terms of the incoming-outgoing rates from
#' the network's nodes:
#' \deqn{R_0 = \beta \frac{\hat{k_\text{in} k_\text{out}}}{\hat{k_\text{in}}},}{R₀ = \beta〈k_in*k_out〉/〈k_in〉,}
#' where \eqn{\beta} is the transmission coefficient among animals,
#' \eqn{k_\text{in/out}}{k_in/out} are the in/out-degrees of a node and the
#' \eqn{\hat{\cdot}}{〈·〉} symbol represents the average value across all nodes
#' in the graph.
#'
#' The unweighted value computed above is most appropriate for a highly
#' infectious epidemy with high animal-prevalence on nodes, as it assumes that
#' any contact is potentially infectious.
#' This assumes that the network object has node attributes "Lon" "Lat"
#' in the WGS84 reference system.
#'
#' In the weighted formulation, \eqn{k_\text{in/out}}{k_in/out} are
#' the weight values for the incoming/outgoing edges in each node.
#' It is more appropriate for low-prevalence diseases, where the transmission
#' probability is assumed proportional to the number of contacts.
#' @export
setMethod
(
rasterize
,
c
(
"igraph"
,
"Raster"
),
{
function
(
x
,
y
,
field
=
"importance"
,
...
)
{
etx
<-
epidemic_threshold
(
x
,
beta
=
1
)
## If the graph is weighted, use weights
if
(
is.null
(
epiR0
<-
etx
$
weighted
))
{
epiR0
<-
etx
$
unweighted
}
sna
<-
attr
(
epiR0
,
"sna"
)
node_importance
<-
setNames
(
data.frame
(
sna
[,
1
],
100
*
sna
$
R0k
/
epiR0
[
"R0"
]),
c
(
"name"
,
"importance"
)
)
nodes
<-
as.data.frame
(
igraph
::
vertex.attributes
(
x
))
nodes
<-
merge
(
nodes
,
node_importance
,
by
=
"name"
,
all.y
=
FALSE
)
## Cast to SpatialPointsDataFrame
## Assume CRS WGS84
coordinates
(
nodes
)
<-
~
Lon
+
Lat
proj4string
(
nodes
)
<-
CRS
(
"+proj=longlat +datum=WGS84"
)
vor
<-
voronoi
(
nodes
,
ext
=
extent
(
y
))
ans
<-
raster
::
mask
(
raster
::
rasterize
(
vor
,
y
,
field
=
field
,
...
),
y
)
return
(
ans
)
}
}
)
#' Rasterize a geographic network
#'
#' Copmute a raster with the importance of the nearest network node.
#'
#' This assumes that the network object has node attributes "Lon" "Lat"
#' in the WGS84 reference system.
#'
#' @export
setMethod
(
rasterize
,
c
(
"igraph"
,
"SpatialPolygons"
),
{
function
(
x
,
y
,
res
=
resolution
(
y
,
min_ncells
=
100
),
...
)
{
ext_grid
<-
raster
::
raster
(
raster
::
extent
(
y
),
resolution
=
res
)
msk
<-
raster
::
rasterize
(
y
,
ext_grid
,
field
=
1
,
background
=
NA
,
fun
=
"mean"
)
rasterize
(
x
,
msk
,
...
)
}
}
)
#' Compute the Epidemic Threshold of a graph
#'
#' Weighted and unweighted Epidemic Threshold \eqn{q} of a graph.
...
...
man/rasterize-igraph-Raster-method.Rd
0 → 100644
View file @
33230927
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/network.R
\docType{methods}
\name{rasterize,igraph,Raster-method}
\alias{rasterize,igraph,Raster-method}
\title{Rasterize a geographic network}
\usage{
\S4method{rasterize}{igraph,Raster}(x, y, field = "importance", ...)
}
\description{
Copmute a raster with the importance of the nearest network node.
}
\details{
This assumes that the network object has node attributes "Lon" "Lat"
in the WGS84 reference system.
}
man/rasterize-igraph-SpatialPolygons-method.Rd
0 → 100644
View file @
33230927
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/network.R
\docType{methods}
\name{rasterize,igraph,SpatialPolygons-method}
\alias{rasterize,igraph,SpatialPolygons-method}
\title{Rasterize a geographic network}
\usage{
\S4method{rasterize}{igraph,SpatialPolygons}(x, y, res = resolution(y,
min_ncells = 100), ...)
}
\description{
Copmute a raster with the importance of the nearest network node.
}
\details{
This assumes that the network object has node attributes "Lon" "Lat"
in the WGS84 reference system.
}
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment