#! /usr/bin/env python3 """mergeSV : merge SV on the basis of their intervals The merging is done by identifiying connected components in a graph. The graph is constructing taking the SV a node and an edge connects two nodes if the conresponding intervals exhibits a reciprocal overlap of a least R0%. Additional constraints on the precision of breakpoints (left and right) can be specified. Each connected component is termed a CNVR (Copy Number Variation Region) and is associated to the corresponding CNVs. """ import argparse, sys import glob import vcf import string import os import re import xlsxwriter import sys prg_path = os.path.dirname(os.path.realpath(__file__)) sys.path.insert(0, os.path.join(prg_path, "lib")) from svreader.vcfwrapper import VCFReader from svinterval import construct_overlap_graph, connected_components alphabet = list(string.ascii_uppercase) xlsx_cols = alphabet.copy() for alp in alphabet: for j in alphabet: xlsx_cols.append(alp + j) color_not_found = "#FE2E2E" color_not_found_2 = "#dddddd" color_col_filter = "#BEF781" color_is_kept = "#81F781" color_false_positive = "#FE642E" color_wrong_gt = "#B40404" def get_args(): parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter, description="\ Build Results \n \ description: Build results of the simulated data detection") parser.add_argument('-v', '--vcf', type=str, required=True, help='folder containing all vcf results files') parser.add_argument('-t', '--true-vcf', type=str, required=True, help='VCF file containing the simulated deletions') parser.add_argument('-f', '--filtered-vcf', type=str, required=False, help='VCF file containing the filtered results') parser.add_argument('-g', '--genotypes', type=str, help="VCF file containing genotypes") parser.add_argument('--overlap_cutoff', type=float, default=0.5, help='cutoff for reciprocal overlap') parser.add_argument('--left_precision', type=int, default=-1, help='left breakpoint precision') parser.add_argument('--right_precision', type=int, default=-1, help='right breakpoint precision') parser.add_argument('-o', '--output', type=str, default="results", help='output prefix') parser.add_argument('--no-xls', action='store_const', const=True, default=False, help='Do not build Excel file') parser.add_argument('--haploid', action='store_const', const=True, default=False, help='The organism is haploid') # parse the arguments args = parser.parse_args() if args.left_precision == -1: args.left_precision = sys.maxsize if args.right_precision == -1: args.right_precision = sys.maxsize # send back the user input return args # A small wrapper to print to stderr def eprint(*args, **kwargs): print(*args, file=sys.stderr, **kwargs) def to_vcf_record(cnv): info = { "SVLEN" : cnv.length(), "SVTYPE" : "DEL", "END" : cnv.end, "NUM_CNV" : cnv.NumCNV(), "CNV":",".join(cnv.CNV()), "CALLERS":",".join(cnv.Callers()), "NUM_CALLERS":cnv.NumCallers(), "CIPOS":cnv.cipos(), "CIEND":cnv.ciend(), "PRECISION":",".join(map(str,cnv.precision())), "CALLERSVSAMPLES":",".join(cnv.CallersVsamples()) } alt = [vcf.model._SV("DEL")] if not cnv.IsPrecise(): info['IMPRECISE'] = True else: info['REPR_CNV'] = cnv.repr_cnv() vcf_record = vcf.model._Record(cnv.chrom, cnv.start, cnv.name, "N", alt, ".", ".", info, "", [0], []) return vcf_record def passed_variant(record): """Did this variant pass?""" return record.filter is None or len(record.filter) == 0 or "PASS" in record.filter # -------------------------------------- # main function def read_vcf_file(infile): SVSet=[] ids = [] for record in VCFReader(infile): if not passed_variant(record): continue SVSet.append(record) ids.append(record.id) return SVSet, ids def svsort(sv, records): """ Function to sort regions """ if records[sv]["start"] != "": start = str(records[sv]["start"]) else: first_tool = list(records[sv]["tools"].keys())[0] start = str(records[sv]["tools"][first_tool]["start"]) return int(records[sv]["chromosome"] + ("0" * (15 - len(start))) + start) def get_gt(geno, true_gt): """ Get the genotype: consider 1/0 and 0/1 as equivalent (we can't identify a specific chromosome) We want geno equal to true_gt in these cases :param geno: the genotype :param true_gt: the true genotype :return: the genotype """ if true_gt is not None: if geno == "1/0" and true_gt == "0/1": geno = "0/1" elif geno == "0/1" and true_gt == "1/0": geno = "1/0" return geno def get_max_len(cell, col, max_col_len): """ Get the max content length of a column :param cell: the cell content :param col: the column number :param max_col_len: current max content length for each column :return: the new max content length for the given column """ return max(len(str(cell)), max_col_len[col] if col in max_col_len else 0) def get_quality_color(quality): """ Returns the color associated to a genotype quality value :param quality: the quality value :return: the associated color """ color_very_low_quality = "#FE2E2E" color_low_quality = "#FE9A2E" color_medium_quality = "#FFFF00" color_high_quality = "#81F781" if quality > 60: return color_high_quality elif quality > 40: return color_medium_quality elif quality > 20: return color_low_quality else: return color_very_low_quality def get_genotypes(genotypes_file, true_vcf_file): """ Get genotype of each individual for each SV :param genotypes_file: VCF file containing genotypes :param true_vcf_file: VCF file containing real data :return: genotypes of each individual for each SV, quality of each genotype, number of individuals """ genotypes = {} gt_quality = {} nb_inds = 0 # Genotypes: genotypes_raw = os.popen("zcat " + genotypes_file + " " + true_vcf_file + " | " + os.path.join(prg_path, "vawk") + " '{ print $3,S$*$GT}'").read().split("\n") for gt in genotypes_raw: if gt != "": gt_l = gt.split("\t") genotypes[gt_l[0]] = gt_l[1:] nb_inds = len(gt_l[1:]) gt_quality_raw = os.popen("zcat " + genotypes_file + " | " + os.path.join(prg_path, "vawk") + " '{ print $3,S$*$GQ}'").read().split("\n") for gq in gt_quality_raw: if gq != "": gq_l = gq.split("\t") gt_quality[gq_l[0]] = gq_l[1:] return genotypes, gt_quality, nb_inds def build_records(genotypes, SVSet, true_ones_records, filtered_records, gt_quality): """ Build records for each SV :param genotypes: list of genotypes of each individual for each SV :param SVSet: set of all SVs :param true_ones_records: records of the real data :param filtered_records: records of the filtered data :param gt_quality: list of qualities of each genotype of individuals for each SV :return: records dict, tools set, list of orphans records (associated to None real data) """ number = 1 records = {} tools = set() orphans = 0 for components in connected_components(SVSet): names = [] results = {} true_one = None for node in components: names.append(node.id) if node.id in true_ones_records: true_one = node.id records[true_one] = { "start": node.start, "end": node.end, "length": int(node.end) - int(node.start), "tools": {}, "orphan": False, "genotypes": genotypes[true_one] if true_one in genotypes else None, "chromosome": node.chrom } else: tool_name = node.id.split("_")[0] results[tool_name] = { "start": node.start, "end": node.end, "length": int(node.end) - int(node.start), "filtered": (node.id in filtered_records) if filtered_records is not None else False, "genotypes": genotypes[node.id] if node.id in genotypes else None, "qualities": gt_quality[node.id] if node.id in gt_quality else None } tools.add(tool_name) if true_one is not None: records[true_one]["tools"] = results else: orphans += 1 records["orphan_" + str(orphans)] = { "start": "", "end": "", "length": "", "tools": results, "orphan": True, "genotypes": None } names.sort() eprint("Group #%i: %s" % (number, ", ".join(names))) number += 1 return records, tools, orphans def build_header(tools, cells, cells_gt, cells_gq, filtered_records, nb_records, max_col_len, nb_inds): """ Build tools headers, and header cells for each tool :param tools: list of tools :param cells: cells of the first sheet (sv description) :param cells_gt: cells of the second sheet (genotype) :param cells_gq: cells of the third sheet (genotype quality) :param filtered_records: (bool) is there filtered records :param nb_records: number of records :param max_col_len: max content length for each column :param nb_inds: number of individuals :return: headers (list of tools + read and filtered data) ; cells, cells_gt, cells_gq and max_col_len updated """ i = 2 j = 2 headers = ["Chr"] for tool in ["Real data"] + tools + (["Filtered results"] if filtered_records else []): headers.append(tool) l_format = {"bold": True} if tool == "Filtered results": l_format["bg_color"] = color_col_filter cells[xlsx_cols[i] + "2"] = cells[xlsx_cols[i] + str(2 + nb_records + 3)] = {"text": "Start", "format": l_format} max_col_len[i] = get_max_len("Start", i, max_col_len) cells[xlsx_cols[i + 1] + "2"] = cells[xlsx_cols[i + 1] + str(2 + nb_records + 3)] = {"text": "End", "format": l_format} max_col_len[i + 1] = get_max_len("End", i + 1, max_col_len) cells[xlsx_cols[i + 2] + "2"] = cells[xlsx_cols[i + 2] + str(2 + nb_records + 3)] = {"text": "Length", "format": l_format} max_col_len[i + 2] = get_max_len("Length", i + 2, max_col_len) # Genotypes: for k in range(0, nb_inds): cells_gt[xlsx_cols[j + k] + "2"] = cells_gq[xlsx_cols[j + k] + "2"] = \ {"text": "INDIV_" + str(k + 1), "format": {"bold": True}} i += 3 j += nb_inds return headers, cells, cells_gt, cells_gq, max_col_len def fill_real_data(row, cells, cells_gt, cells_gq, max_col_len, record, rec_id, nb_records, chromosome): """ Fill cells of the first data column (real data simulated) :param cells: cells of the first sheet (sv description) :param cells_gt: cells of the second sheet (genotype) :param cells_gq: cells of the third sheet (genotype quality) :param max_col_len: max text length for each column :param record: data of the record :param nb_records: number of records (total) :return: cells, cells_gt, cells_gq and max_col_len updated """ # SV ID: cells[xlsx_cols[0] + str(row)] = cells[xlsx_cols[0] + str(row + nb_records + 3)] = {"text": rec_id, "format": {}} max_col_len[0] = get_max_len(rec_id, 0, max_col_len) cells_gt[xlsx_cols[0] + str(row)] = cells_gq[xlsx_cols[0] + str(row)] = {"text": rec_id, "format": {}} # Chromosome: cells[xlsx_cols[1] + str(row)] = cells[xlsx_cols[1] + str(row + nb_records + 3)] = {"text": chromosome, "format": {}} cells_gt[xlsx_cols[1] + str(row)] = cells_gq[xlsx_cols[1] + str(row)] = {"text": chromosome, "format": {}} # START: cells[xlsx_cols[2] + str(row)] = cells[xlsx_cols[2] + str(row + nb_records + 3)] = {"text": record["start"], "format": {}} max_col_len[2] = get_max_len(record["start"], 2, max_col_len) # END: cells[xlsx_cols[3] + str(row)] = cells[xlsx_cols[3] + str(row + nb_records + 3)] = {"text": record["end"], "format": {}} max_col_len[3] = get_max_len(record["end"], 3, max_col_len) # LENGTH: cells[xlsx_cols[4] + str(row)] = cells[xlsx_cols[4] + str(row + nb_records + 3)] = {"text": record["length"], "format": {}} max_col_len[4] = get_max_len(record["length"], 4, max_col_len) # GENOTYPES: if record["genotypes"] is not None: for gt in range(0, len(record["genotypes"])): cells_gt[xlsx_cols[2 + gt] + str(row)] = cells_gq[xlsx_cols[2 + 0 + gt] + str(row)] = \ {"text": record["genotypes"][gt], "format": {}} return cells, cells_gt, cells_gq, max_col_len def fill_tool_data(row, col, cells, max_col_len, record, nb_records, my_start, my_end, my_length, sv_format=None): """ Fill cells for a tool and a record :param row: row position :param col: columns position :param cells: cells of the first sheet (sv description) :param max_col_len: max text length for each column :param record: data of the record for a tool :param nb_records: number of records (total) :param my_start: real start of the SV :param my_end: real end of the SV :param my_length: real length of the SV :param sv_format: format for the cell :return: cells and max_col_len updated """ if sv_format is None: sv_format = {} ############# # RAW DATA: # ############# # START: cells[xlsx_cols[col] + str(row)] = {"text": record["start"], "format": sv_format} max_col_len[col] = get_max_len(record["start"], col, max_col_len) # END: cells[xlsx_cols[col + 1] + str(row)] = {"text": record["end"], "format": sv_format} max_col_len[col + 1] = get_max_len(record["end"], col + 1, max_col_len) # LENGTH: cells[xlsx_cols[col + 2] + str(row)] = {"text": record["length"], "format": sv_format} max_col_len[col + 2] = get_max_len(record["length"], col + 2, max_col_len) ########### # DIFFS: # ########### if my_start != "": start = record["start"] - my_start end = record["end"] - my_end length = record["length"] - my_length else: start = end = length = "NA" # START: cells[xlsx_cols[col] + str(row + nb_records + 3)] = {"text": start, "format": sv_format} # END: cells[xlsx_cols[col + 1] + str(row + nb_records + 3)] = {"text": end, "format": sv_format} # LENGTH: cells[xlsx_cols[col + 2] + str(row + nb_records + 3)] = {"text": length, "format": sv_format} return cells, max_col_len def fill_genotypes_data(row, col, cells_gt, cells_gq, record, my_genotypes, haploid=False): """ Fill cells for a tool and a record (genotype/genotype quality parts) :param row: row position :param col: column position :param cells_gt: cells for genotype sheet (2) :param cells_gq: cells for the genotype quality sheet (3) :param record: data of the record for a tool :param my_genotypes: real genotypes for each individual :return: cells_gt and cells_gq updated """ the_genotypes = record["genotypes"] for gt in range(0, len(the_genotypes)): true_gt = my_genotypes[gt] if my_genotypes is not None else "" geno = get_gt(the_genotypes[gt], true_gt) # Format: gt_format = {"bg_color": get_quality_color(int(record["qualities"][gt]))} if (not haploid and geno != true_gt) or \ (haploid and ((true_gt == "1" and geno != "1/1") or (true_gt == "0" and geno != "0/0"))): gt_format["font_color"] = "#ff0000" # Genotype: cells_gt[xlsx_cols[col + gt] + str(row)] = {"text": geno, "format": gt_format} # Quality: cells_gq[xlsx_cols[col + gt] + str(row)] = {"text": int(record["qualities"][gt]), "format": gt_format} return cells_gt, cells_gq def write_headers(workbook, worksheet, headers, cell_len, rows, filtered_records): """ Write header on the given sheet of the XLSX file :param workbook: the XSLX file workbook :param worksheet: th sheet :param headers: headers values :param cell_len: length of each cell of the header :param rows: (list) rows into write the header :param filtered_records: (bool) is there filtered records """ for row in rows: merge_format = workbook.add_format({'bold': True}) worksheet.write(xlsx_cols[1] + str(row+1) + ":" + xlsx_cols[cell_len] + str(row+1), headers[0], merge_format) i = 0 for header in headers[1:]: if i < len(headers) - 2 or not filtered_records: merge_format = workbook.add_format({'align': 'center'}) else: merge_format = workbook.add_format({'align': 'center', 'bg_color': color_col_filter}) for row in rows: worksheet.merge_range(xlsx_cols[2 + i * cell_len] + str(row) + ":" + xlsx_cols[1 + cell_len + i * cell_len] + str(row), header, merge_format) i += 1 def create_xls_document(args, headers, filtered_records, nb_records, nb_inds, cells, cells_gt, cells_gq, max_col_len): """ Create the XLSX file :param args: arguments given by the user (argparse) :param headers: headers of each sheet :param filtered_records: (bool) has filtered records :param nb_records: number of records :param nb_inds: number of individuals :param cells: cells for first sheet (SV description) :param cells_gt: cells for second sheet (genotypes) :param cells_gq: cells for third sheet (genotype quality) :param max_col_len: max content length for each column """ with xlsxwriter.Workbook(args.output + ".xslx") as workbook: ################################# # First sheet (SV description): # ################################# worksheet = workbook.add_worksheet("SVs") write_headers(workbook, worksheet, headers, 3, [1, 1+nb_records+3], filtered_records) # Body: for cell_id, cell_content in cells.items(): cell_format = workbook.add_format(cell_content["format"]) worksheet.write(cell_id, cell_content["text"], cell_format) # Resize columns: for col, max_len in max_col_len.items(): worksheet.set_column(col, col, max_len+1) if args.genotypes: ############################# # Second sheet (Genotypes): # ############################# worksheet_gt = workbook.add_worksheet("Genotypes") write_headers(workbook, worksheet_gt, headers, nb_inds, [1], filtered_records) # Body: for cell_id, cell_content in cells_gt.items(): cell_format = workbook.add_format(cell_content["format"]) worksheet_gt.write(cell_id, cell_content["text"], cell_format) worksheet_gt.freeze_panes(0, 2+nb_inds) # Resize columns: worksheet_gt.set_column(0, 0, max_col_len[0]+1) #################################### # Third sheet (Genotypes quality): # #################################### worksheet_gq = workbook.add_worksheet("Gt quality") write_headers(workbook, worksheet_gq, headers, nb_inds, [1], filtered_records) # Body for cell_id, cell_content in cells_gq.items(): cell_format = workbook.add_format(cell_content["format"]) worksheet_gq.write(cell_id, cell_content["text"], cell_format) worksheet_gq.freeze_panes(0, 2+nb_inds) # Resize columns: worksheet_gq.set_column(0, 0, max_col_len[0]+1) def create_tsv_file(filename: str, headers: list, cells: dict, nb_tools: int, nb_per_tool: int, records_range: ()): # Init rows: head = ["", headers[0]] top_headers = {} h = 2 for header in headers[1:]: # Define top headers to each column: for i in range(0, nb_per_tool): top_headers[h] = header head.append("") h += 1 rows = [head] for i in range(0, records_range[1]-records_range[0]): rows.append(["" for x in range(0, (nb_tools * nb_per_tool) + 2)]) # Fill content: for id_cell, cell in cells.items(): id_m = re.match(r"^([A-Z]+)(\d+)$", id_cell) col = xlsx_cols.index(id_m.group(1)) row = int(id_m.group(2)) if records_range[0] <= row <= records_range[1]: r = row - records_range[0] if r == 0 and col > 0: if col > 1: rows[r][col] = top_headers[col].replace(" ", "_") + "__" + cell["text"] else: rows[r][col] = headers[0] else: rows[r][col] = str(cell["text"]) # List as text: for r in range(0, len(rows)): rows[r] = "\t".join(rows[r]) tsv = "\n".join(rows) with open(filename, "w") as tsv_file: tsv_file.write(tsv) # noinspection PyUnresolvedReferences def main(): # parse the command line args args = get_args() genotypes = {} gt_quality = {} nb_inds = 0 if args.genotypes: genotypes, gt_quality, nb_inds = get_genotypes(args.genotypes, args.true_vcf) overlap_cutoff = args.overlap_cutoff left_precision = args.left_precision right_precision = args.right_precision filenames = [] filenames += glob.glob(args.vcf + "/**/*.vcf", recursive=True) filenames += glob.glob(args.vcf + "/**/*.vcf.gz", recursive=True) true_ones = args.true_vcf # Reading all the vcf files SVSet=[] for infile in filenames: eprint(" Reading file %s" % (infile)) try: SVSet += read_vcf_file(infile)[0] except: print("Ignoreing file %s" % (infile)) eprint(" Reading file %s" % (true_ones)) SVSet_to, true_ones_records = read_vcf_file(true_ones) SVSet += SVSet_to filtered_records = None if args.filtered_vcf: eprint(" Reading file %s" % (args.filtered_vcf)) filtered_records = read_vcf_file(args.filtered_vcf)[1] # Compute connected components: eprint("Computing Connected components") construct_overlap_graph(SVSet,overlap_cutoff,left_precision,right_precision) # Build records: records, tools, orphans = build_records(genotypes, SVSet, true_ones_records, filtered_records, gt_quality) nb_records = len(records) ################################################# # Define cells of each sheet of the excel file: # ################################################# # First one (SV description) cells = { "A1": {"text": "RESULTS", "format": {"bg_color": "#ffe856"}}, "A2": {"text": "Deletion", "format": {"bold": True}}, "A" + str(1+nb_records+3): {"text": "DIFFS", "format": {"bg_color": "#ffe856"}}, "A" + str(2+nb_records+3): {"text": "Deletion", "format": {"bold": True}} } # Second one (genotype) cells_gt = { "A1": {"text": "GENOTYPES", "format": {"bg_color": "#ffe856"}}, "A2": {"text": "Deletion", "format": {"bold": True}} } # Third one (genotype quality) cells_gq = { "A1": {"text": "GT QUALITY", "format": {"bg_color": "#ffe856"}}, "A2": {"text": "Deletion", "format": {"bold": True}} } tools = sorted(tools) nb_tools = len(tools) max_col_len = {} ###################### # BUILD HEADER CELLS # ###################### headers, cells, cells_gt, cells_gq, max_col_len = build_header(tools, cells, cells_gt, cells_gq, filtered_records is not None, nb_records, max_col_len, nb_inds) rec_keys = sorted(records.keys(), key=lambda x:svsort(x, records)) #################### # BUILD BODY CELLS # #################### i = 3 for rec_id in rec_keys: record = records[rec_id] my_start = record["start"] my_end = record["end"] my_length = record["length"] my_genotypes = record["genotypes"] # Real data of the simulation: cells, cells_gt, cells_gq, max_col_len = fill_real_data(i, cells, cells_gt, cells_gq, max_col_len, record, rec_id, nb_records, record["chromosome"]) j = 5 g = nb_inds + 2 is_kept = False for tool in tools: if tool in record["tools"]: ########################### # IF TOOL DETECTS THE SV: # ########################### if record["tools"][tool]["filtered"]: ###################### # SET FILTERED DATA: # ###################### is_kept = True sv_format = {"bg_color": color_is_kept} # SV data (sheet 1): cells, max_col_len = fill_tool_data(i, 2+((nb_tools+1)*3), cells, max_col_len, record["tools"][tool], nb_records, my_start, my_end, my_length, {"bg_color": color_col_filter}) # Genotype (sheets 2&3): cells_gt, cells_gq = fill_genotypes_data(i, 2 + ((nb_tools + 1) * nb_inds), cells_gt, cells_gq, record["tools"][tool], my_genotypes, args.haploid) else: sv_format = {} ################# # SET TOOL DATA # ################# # SV data (sheet 1): cells, max_col_len = fill_tool_data(i, j, cells, max_col_len, record["tools"][tool], nb_records, my_start, my_end, my_length, sv_format) # Genotype (sheets 2&3): cells_gt, cells_gq = fill_genotypes_data(i, g, cells_gt, cells_gq, record["tools"][tool], my_genotypes, args.haploid) else: ############################### # TOOL DOES NOT DETECT THE SV # ############################### for k in range(0,3): # noinspection PyUnresolvedReferences cells[xlsx_cols[j + k] + str(i)] = {"text": "", "format": {"bg_color": color_not_found}} cells[xlsx_cols[j + k] + str(i+nb_records+3)] = {"text": "", "format": {"bg_color": color_not_found}} # Genotype: for gt in range(0, nb_inds): # noinspection PyUnresolvedReferences cells_gt[xlsx_cols[g + gt] + str(i)] = cells_gq[xlsx_cols[g + gt] + str(i)] = \ {"text": "", "format": {"bg_color": color_not_found_2}} j += 3 g += nb_inds ############################################################################### # Until we have filled all tools, check if the record is kept after filtering: # ############################################################################### if is_kept: # SV is kept: color bg in green in the corresponding tool cells[xlsx_cols[0] + str(i)]["format"]["bg_color"] = \ cells[xlsx_cols[0] + str(i+nb_records+3)]["format"]["bg_color"] = color_is_kept elif filtered_records is not None: # SV does not pass the filter: color bg in red in the filter column cells[xlsx_cols[2 + ((nb_tools + 1) * 3)] + str(i)] = {"text": "", "format": {"bg_color": color_not_found}} cells[xlsx_cols[2 + ((nb_tools + 1) * 3) + 1] + str(i)] = {"text": "", "format": {"bg_color": color_not_found}} cells[xlsx_cols[2 + ((nb_tools + 1) * 3) + 2] + str(i)] = {"text": "", "format": {"bg_color": color_not_found}} cells[xlsx_cols[2 + ((nb_tools + 1) * 3)] + str(i + nb_records + 3)] = {"text": "", "format": {"bg_color": color_not_found}} cells[xlsx_cols[2 + ((nb_tools + 1) * 3) + 1] + str(i + nb_records + 3)] = { "text": "", "format": {"bg_color": color_not_found}} cells[xlsx_cols[2 + ((nb_tools + 1) * 3) + 2] + str(i + nb_records + 3)] = { "text": "", "format": {"bg_color": color_not_found}} # Genotype: # Color in gray in the filter column for gt in range(0, nb_inds): cells_gt[xlsx_cols[2 + ((nb_tools + 1) * nb_inds) + gt] + str(i)] = \ cells_gq[xlsx_cols[2 + ((nb_tools + 1) * nb_inds) + gt] + str(i)] = {"text": "", "format": {"bg_color": color_not_found_2}} # False positives (orphans) in orange: if re.match(r"^orphan_\d+$", rec_id): cells[xlsx_cols[0] + str(i)]["format"]["bg_color"] = \ cells[xlsx_cols[0] + str(i+nb_records+3)]["format"]["bg_color"] = color_false_positive i += 1 # Create document: if not args.no_xls: create_xls_document(args, headers, filtered_records is not None, nb_records, nb_inds, cells, cells_gt, cells_gq, max_col_len) # Create CSV files: create_tsv_file(args.output + "_sv_per_tools.tsv", headers, cells, nb_tools + (2 if filtered_records is not None else 1), 3, (2, nb_records+2)) create_tsv_file(args.output + "_sv_diffs_per_tools.tsv", headers, cells, nb_tools + (2 if filtered_records is not None else 1), 3, (2+nb_records+3, nb_records * 2 + 5)) create_tsv_file(args.output + "_sv_genotypes_per_tools.tsv", headers, cells_gt, nb_tools + (2 if filtered_records is not None else 1), nb_inds, (2, nb_records + 2)) create_tsv_file(args.output + "_sv_genotypes_quality_per_tools.tsv", headers, cells_gq, nb_tools + (2 if filtered_records is not None else 1), nb_inds, (2, nb_records + 2)) print("") print("###########") print("# RESULTS #") print("###########") print("") print(str(nb_records) + " Results found") print(str(orphans) + " False Positive") print("") if not args.no_xls: print("Results saved in :\n\t- " + args.output + ".xslx") else: print("Results:") print("") print("TSV files:") print("\t- " + args.output + "_sv_per_tools.tsv") print("\t- " + args.output + "_sv_diffs_per_tools.tsv") print("\t- " + args.output + "_sv_genotypes_per_tools.tsv") print("\t- " + args.output + "_sv_genotypes_quality_per_tools.tsv") print("") # initialize the script if __name__ == '__main__': try: sys.exit(main()) except: raise