From 9cefbce8432f95f7e1e70aac4ace106e27f8d797 Mon Sep 17 00:00:00 2001
From: Nathalie Vialaneix <nathalie.vialaneix@inrae.fr>
Date: Fri, 16 Aug 2024 13:01:45 +0200
Subject: [PATCH] fixed CRAN NOTE on documentation (issue #11)

---
 DESCRIPTION      |  2 +-
 R/ridgeSIR.R     | 14 +++++++-------
 R/sparseSIR.R    | 26 ++++++++++++++------------
 man/SISIR.Rd     | 10 +++++-----
 man/ridgeSIR.Rd  | 14 +++++++-------
 man/sparseSIR.Rd | 16 +++++++++-------
 6 files changed, 43 insertions(+), 39 deletions(-)

diff --git a/DESCRIPTION b/DESCRIPTION
index e141054..4a99111 100644
--- a/DESCRIPTION
+++ b/DESCRIPTION
@@ -41,6 +41,6 @@ Imports:
 Suggests:
     testthat
 License: GPL (>= 2)
-RoxygenNote: 7.1.2
+RoxygenNote: 7.3.1
 Encoding: UTF-8
 Repository: CRAN
diff --git a/R/ridgeSIR.R b/R/ridgeSIR.R
index 27b0ace..a0b3acc 100644
--- a/R/ridgeSIR.R
+++ b/R/ridgeSIR.R
@@ -26,13 +26,13 @@
 #' @param mu2 ridge regularization parameter (numeric, positive)
 #' @param d number of dimensions to be kept
 #' 
-#' @author {Victor Picheny, \email{victor.picheny@inrae.fr}\cr
+#' @author Victor Picheny, \email{victor.picheny@inrae.fr}\cr
 #' Remi Servien, \email{remi.servien@inrae.fr}\cr
-#' Nathalie Vialaneix, \email{nathalie.vialaneix@inrae.fr}}
+#' Nathalie Vialaneix, \email{nathalie.vialaneix@inrae.fr}
 #' 
-#' @references {Picheny, V., Servien, R. and Villa-Vialaneix, N. (2019) 
+#' @references Picheny, V., Servien, R. and Villa-Vialaneix, N. (2019) 
 #' Interpretable sparse SIR for digitized functional data. 
-#' \emph{Statistics and Computing}, \strong{29}(2), 255--267.}
+#' \emph{Statistics and Computing}, \strong{29}(2), 255--267.
 #' 
 #' @seealso \code{\link{sparseSIR}}, \code{\link{SISIR}}, 
 #' \code{\link{tune.ridgeSIR}}
@@ -49,20 +49,20 @@
 #' \dontrun{print(res_ridge)}
 #' 
 #' @return S3 object of class \code{ridgeRes}: a list consisting of
-#' \itemize{
+#' \describe{
 #'    \item{\code{EDR}}{ the estimated EDR space (a p x d matrix)}
 #'    \item{\code{condC}}{ the estimated slice projection on EDR (a d x H 
 #'    matrix)}
 #'    \item{\code{eigenvalues}}{ the eigenvalues obtained during the generalized 
 #'    eigendecomposition performed by SIR}
 #'    \item{\code{parameters}}{ a list of hyper-parameters for the method: 
-#'    \itemize{
+#'    \describe{
 #'      \item{\code{H}}{ number of slices}
 #'      \item{\code{d}}{ dimension of the EDR space}
 #'      \item{\code{mu2}}{ regularization parameter for the ridge penalty}
 #'    }}
 #'    \item{\code{utils}}{ useful outputs for further computations:
-#'    \itemize{
+#'    \describe{
 #'      \item{\code{Sigma}}{ covariance matrix for x}
 #'      \item{\code{slices}}{ slice number for all observations}
 #'      \item{\code{invsqrtS}}{ value of the inverse square root of the 
diff --git a/R/sparseSIR.R b/R/sparseSIR.R
index 646a9a1..7eb9bf7 100644
--- a/R/sparseSIR.R
+++ b/R/sparseSIR.R
@@ -50,29 +50,31 @@
 #' res_sparse <- sparseSIR(res_ridge, rep(10, 20))
 #' 
 #' @return S3 object of class \code{sparseRes}: a list consisting of
-#' \itemize{
+#' \describe{
 #'    \item{\code{sEDR}}{ the estimated EDR space (a p x d matrix)}
 #'    \item{\code{alpha}}{ the estimated shrinkage coefficients (a vector having
 #'    a length similar to \code{inter_len})}
 #'    \item{\code{quality}}{ a vector with various qualities for the model (see
 #'    Details)}
 #'    \item{\code{adapt_res}}{ if \code{adaptive = TRUE}, a list of two vectors: 
-#'    \itemize{
+#'    \describe{
 #'      \item{\code{nonzeros}}{ indexes of variables that are strong non zeros}
 #'      \item{\code{zeros}}{ indexes of variables that are strong zeros}
 #'    }}
 #'    \item{\code{parameters}}{ a list of hyper-parameters for the method: 
-#'    \itemize{
+#'    \describe{
 #'      \item{\code{inter_len}}{ lengths of intervals}
 #'      \item{\code{sel_prop}}{ if \code{adaptive = TRUE}, fraction of the 
 #'      coefficients which are considered as strong zeros or strong non zeros}
 #'    }}
 #'    \item{\code{rSIR}}{ same as the input \code{object}}
 #'    \item{\code{fit}}{ a list for LASSO fit with:
-#'    \itemize{
-#'      \item{\code{glmnet}} result of the \code{\link[glmnet]{glmnet}} function
-#'      \item{\code{lambda}} value of the best Lasso parameter by CV
-#'      \item{\code{x}} exploratory variable values as passed to fit the model
+#'    \describe{
+#'      \item{\code{glmnet}}{ result of the \code{\link[glmnet]{glmnet}} 
+#'      function}
+#'      \item{\code{lambda}}{ value of the best Lasso parameter by CV}
+#'      \item{\code{x}}{ exploratory variable values as passed to fit the 
+#'      model}
 #'    }}
 #'  }
 #'  
@@ -310,13 +312,13 @@ project <- function(object) {
 #' number of parameters is either the number of non null intervals or the 
 #' number of non null parameters with respect to the original variables
 #' 
-#' @author {Victor Picheny, \email{victor.picheny@inrae.fr}\cr
+#' @author Victor Picheny, \email{victor.picheny@inrae.fr}\cr
 #' Remi Servien, \email{remi.servien@inrae.fr}\cr
-#' Nathalie Vialaneix, \email{nathalie.vialaneix@inrae.fr}}
+#' Nathalie Vialaneix, \email{nathalie.vialaneix@inrae.fr}
 #' 
-#' @references {Picheny, V., Servien, R. and Villa-Vialaneix, N. (2016) 
+#' @references Picheny, V., Servien, R. and Villa-Vialaneix, N. (2016) 
 #' Interpretable sparse SIR for digitized functional data.
-#' \emph{Statistics and Computing}, \strong{29}(2), 255--267.}
+#' \emph{Statistics and Computing}, \strong{29}(2), 255--267.
 #' 
 #' @seealso \code{\link{ridgeSIR}}, \code{\link{sparseSIR}}
 #' 
@@ -335,7 +337,7 @@ project <- function(object) {
 #' \dontrun{res_fused <- SISIR(res_ridge, rep(1, ncol(x)))}
 #' 
 #' @return S3 object of class \code{SISIR}: a list consisting of
-#' \itemize{
+#' \describe{
 #'    \item{\code{sEDR}}{ the estimated EDR spaces (a list of p x d matrices)}
 #'    \item{\code{alpha}}{ the estimated shrinkage coefficients (a list of 
 #'    vectors)}
diff --git a/man/SISIR.Rd b/man/SISIR.Rd
index ffa47d2..42f3234 100644
--- a/man/SISIR.Rd
+++ b/man/SISIR.Rd
@@ -37,7 +37,7 @@ NULL, all available cores minus one are used}
 }
 \value{
 S3 object of class \code{SISIR}: a list consisting of
-\itemize{
+\describe{
    \item{\code{sEDR}}{ the estimated EDR spaces (a list of p x d matrices)}
    \item{\code{alpha}}{ the estimated shrinkage coefficients (a list of 
    vectors)}
@@ -78,15 +78,15 @@ res_ridge <- ridgeSIR(x, y, H = 10, d = 2, mu2 = 10^8)
 
 }
 \references{
-{Picheny, V., Servien, R. and Villa-Vialaneix, N. (2016) 
+Picheny, V., Servien, R. and Villa-Vialaneix, N. (2016) 
 Interpretable sparse SIR for digitized functional data.
-\emph{Statistics and Computing}, \strong{29}(2), 255--267.}
+\emph{Statistics and Computing}, \strong{29}(2), 255--267.
 }
 \seealso{
 \code{\link{ridgeSIR}}, \code{\link{sparseSIR}}
 }
 \author{
-{Victor Picheny, \email{victor.picheny@inrae.fr}\cr
+Victor Picheny, \email{victor.picheny@inrae.fr}\cr
 Remi Servien, \email{remi.servien@inrae.fr}\cr
-Nathalie Vialaneix, \email{nathalie.vialaneix@inrae.fr}}
+Nathalie Vialaneix, \email{nathalie.vialaneix@inrae.fr}
 }
diff --git a/man/ridgeSIR.Rd b/man/ridgeSIR.Rd
index 1a4116a..248061b 100644
--- a/man/ridgeSIR.Rd
+++ b/man/ridgeSIR.Rd
@@ -19,20 +19,20 @@ ridgeSIR(x, y, H, d, mu2 = NULL)
 }
 \value{
 S3 object of class \code{ridgeRes}: a list consisting of
-\itemize{
+\describe{
    \item{\code{EDR}}{ the estimated EDR space (a p x d matrix)}
    \item{\code{condC}}{ the estimated slice projection on EDR (a d x H 
    matrix)}
    \item{\code{eigenvalues}}{ the eigenvalues obtained during the generalized 
    eigendecomposition performed by SIR}
    \item{\code{parameters}}{ a list of hyper-parameters for the method: 
-   \itemize{
+   \describe{
      \item{\code{H}}{ number of slices}
      \item{\code{d}}{ dimension of the EDR space}
      \item{\code{mu2}}{ regularization parameter for the ridge penalty}
    }}
    \item{\code{utils}}{ useful outputs for further computations:
-   \itemize{
+   \describe{
      \item{\code{Sigma}}{ covariance matrix for x}
      \item{\code{slices}}{ slice number for all observations}
      \item{\code{invsqrtS}}{ value of the inverse square root of the 
@@ -60,16 +60,16 @@ res_ridge <- ridgeSIR(x, y, H = 10, d = 2, mu2 = 10^8)
 
 }
 \references{
-{Picheny, V., Servien, R. and Villa-Vialaneix, N. (2019) 
+Picheny, V., Servien, R. and Villa-Vialaneix, N. (2019) 
 Interpretable sparse SIR for digitized functional data. 
-\emph{Statistics and Computing}, \strong{29}(2), 255--267.}
+\emph{Statistics and Computing}, \strong{29}(2), 255--267.
 }
 \seealso{
 \code{\link{sparseSIR}}, \code{\link{SISIR}}, 
 \code{\link{tune.ridgeSIR}}
 }
 \author{
-{Victor Picheny, \email{victor.picheny@inrae.fr}\cr
+Victor Picheny, \email{victor.picheny@inrae.fr}\cr
 Remi Servien, \email{remi.servien@inrae.fr}\cr
-Nathalie Vialaneix, \email{nathalie.vialaneix@inrae.fr}}
+Nathalie Vialaneix, \email{nathalie.vialaneix@inrae.fr}
 }
diff --git a/man/sparseSIR.Rd b/man/sparseSIR.Rd
index b6af598..84e64c4 100644
--- a/man/sparseSIR.Rd
+++ b/man/sparseSIR.Rd
@@ -34,29 +34,31 @@ NULL, all available cores minus one are used}
 }
 \value{
 S3 object of class \code{sparseRes}: a list consisting of
-\itemize{
+\describe{
    \item{\code{sEDR}}{ the estimated EDR space (a p x d matrix)}
    \item{\code{alpha}}{ the estimated shrinkage coefficients (a vector having
    a length similar to \code{inter_len})}
    \item{\code{quality}}{ a vector with various qualities for the model (see
    Details)}
    \item{\code{adapt_res}}{ if \code{adaptive = TRUE}, a list of two vectors: 
-   \itemize{
+   \describe{
      \item{\code{nonzeros}}{ indexes of variables that are strong non zeros}
      \item{\code{zeros}}{ indexes of variables that are strong zeros}
    }}
    \item{\code{parameters}}{ a list of hyper-parameters for the method: 
-   \itemize{
+   \describe{
      \item{\code{inter_len}}{ lengths of intervals}
      \item{\code{sel_prop}}{ if \code{adaptive = TRUE}, fraction of the 
      coefficients which are considered as strong zeros or strong non zeros}
    }}
    \item{\code{rSIR}}{ same as the input \code{object}}
    \item{\code{fit}}{ a list for LASSO fit with:
-   \itemize{
-     \item{\code{glmnet}} result of the \code{\link[glmnet]{glmnet}} function
-     \item{\code{lambda}} value of the best Lasso parameter by CV
-     \item{\code{x}} exploratory variable values as passed to fit the model
+   \describe{
+     \item{\code{glmnet}}{ result of the \code{\link[glmnet]{glmnet}} 
+     function}
+     \item{\code{lambda}}{ value of the best Lasso parameter by CV}
+     \item{\code{x}}{ exploratory variable values as passed to fit the 
+     model}
    }}
  }
  
-- 
GitLab