Commit 427f0140 authored by matbuoro's avatar matbuoro
Browse files

delete coda

parent 313984a6
=============================
DIAGNOSTICS
=============================
---------------------------
Heidelberger and Welch's convergence diagnostic
heidel.diag is a run length control diagnostic based on a criterion of relative accuracy for the estimate of the mean. The default setting corresponds to a relative accuracy of two significant digits.
heidel.diag also implements a convergence diagnostic, and removes up to half the chain in order to ensure that the means are estimated from a chain that has converged.
Stationarity start p-value
test iteration
shape_lambda passed 1 0.976
rate_lambda passed 1 0.952
lambda_tot0 passed 1 0.624
Halfwidth Mean Halfwidth
test
shape_lambda passed 3.604 0.051319
rate_lambda passed 0.024 0.000343
lambda_tot0 passed 167.980 1.800868
---------------------------
Geweke's convergence diagnostic
Geweke (1992) proposed a convergence diagnostic for Markov chains based on a test for equality of the means of the first and last part of a Markov chain (by default the first 10% and the last 50%).
If the samples are drawn from the stationary distribution of the chain, the two means are equal and Geweke's statistic has an asymptotically standard normal distribution.
The test statistic is a standard Z-score: the difference between the two sample means divided by its estimated standard error. The standard error is estimated from the spectral density at zero and so takes into account any autocorrelation.
The Z-score is calculated under the assumption that the two parts of the chain are asymptotically independent, which requires that the sum of frac1 and frac2 be strictly less than 1.
Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5
shape_lambda rate_lambda lambda_tot0
0.1124 -0.2537 1.4104
---------------------------
Raftery and Lewis's diagnostic
Quantile (q) = 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95
Burn-in Total Lower bound Dependence
(M) (N) (Nmin) factor (I)
shape_lambda 20 26665 3746 7.12
rate_lambda 20 24844 3746 6.63
lambda_tot0 12 16041 3746 4.28
This diff is collapsed.
=============================
DIAGNOSTICS
=============================
---------------------------
Heidelberger and Welch's convergence diagnostic
heidel.diag is a run length control diagnostic based on a criterion of relative accuracy for the estimate of the mean. The default setting corresponds to a relative accuracy of two significant digits.
heidel.diag also implements a convergence diagnostic, and removes up to half the chain in order to ensure that the means are estimated from a chain that has converged.
Stationarity start p-value
test iteration
mu_B failed NA 5.71e-03
sigmap_B passed 1 1.56e-01
logit_int_Eu passed 1 7.84e-01
logit_flow_Eu passed 1 6.21e-01
sigmap_Eu passed 1 7.14e-01
p_B95 passed 1 2.95e-01
p_B00 failed NA 2.55e-02
p_B02 passed 1 7.52e-01
shape_lambda failed NA 4.76e-07
rate_lambda failed NA 4.75e-07
mean_gamma passed 10001 6.56e-02
var_gamma failed NA 2.54e-06
test passed 1 6.50e-01
R2 passed 1 4.91e-01
Halfwidth Mean Halfwidth
test
mu_B <NA> NA NA
sigmap_B passed 0.9027 0.01215
logit_int_Eu passed -2.5023 0.00398
logit_flow_Eu passed -0.0746 0.00472
sigmap_Eu passed 0.3052 0.00364
p_B95 failed 0.2701 0.04517
p_B00 <NA> NA NA
p_B02 failed 0.2571 0.05122
shape_lambda <NA> NA NA
rate_lambda <NA> NA NA
mean_gamma passed 3658.8765 21.62628
var_gamma <NA> NA NA
test passed 0.1676 0.01342
R2 failed 0.0229 0.00779
---------------------------
Geweke's convergence diagnostic
Geweke (1992) proposed a convergence diagnostic for Markov chains based on a test for equality of the means of the first and last part of a Markov chain (by default the first 10% and the last 50%).
If the samples are drawn from the stationary distribution of the chain, the two means are equal and Geweke's statistic has an asymptotically standard normal distribution.
The test statistic is a standard Z-score: the difference between the two sample means divided by its estimated standard error. The standard error is estimated from the spectral density at zero and so takes into account any autocorrelation.
The Z-score is calculated under the assumption that the two parts of the chain are asymptotically independent, which requires that the sum of frac1 and frac2 be strictly less than 1.
Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5
mu_B sigmap_B logit_int_Eu logit_flow_Eu sigmap_Eu
6.49912 -0.08354 -0.46858 -1.14408 -1.62014
p_B95 p_B00 p_B02 shape_lambda rate_lambda
-1.52099 3.60818 -0.18611 0.29090 3.14493
mean_gamma var_gamma test R2
-11.34152 -5.76508 -1.61773 1.11843
---------------------------
Raftery and Lewis's diagnostic
Quantile (q) = 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95
Burn-in Total Lower bound Dependence
(M) (N) (Nmin) factor (I)
mu_B 6 8638 3746 2.31
sigmap_B 15 21290 3746 5.68
logit_int_Eu 12 15604 3746 4.17
logit_flow_Eu 12 17540 3746 4.68
sigmap_Eu 21 30492 3746 8.14
p_B95 238 258482 3746 69.00
p_B00 247 249318 3746 66.60
p_B02 336 363952 3746 97.20
shape_lambda 20 24660 3746 6.58
rate_lambda 15 18369 3746 4.90
mean_gamma 2 3927 3746 1.05
var_gamma 30 34752 3746 9.28
test 33 270061 3746 72.10
R2 3 4068 3746 1.09
"mean";"sd";"2.5%";"25%";"50%";"75%";"97.5%"
"mu_B";0.281360594;0.0365256080821125;0.2132;0.2566;0.2798;0.3047;0.3568
"sigmap_B";0.902686772;0.151439354577938;0.6528;0.7949;0.887;0.9926;1.242
"logit_int_Eu";-2.50233682;0.0765323060946495;-2.653;-2.553;-2.502;-2.453;-2.351
"logit_flow_Eu";-0.0746296356386;0.0799635584231659;-0.2357;-0.1262;-0.07387;-0.022265;0.0816420000000001
"sigmap_Eu";0.305199384;0.0653190366336758;0.2013;0.2591;0.297;0.3425;0.4566
"p_B[1]";0.352794004;0.113060367067244;0.1819;0.2482;0.3518;0.4364;0.5637
"p_B[2]";0.337348064;0.114030755609688;0.1456;0.2616;0.3226;0.409;0.5634
"p_B[3]";0.365993326;0.134884697864851;0.1771;0.2491;0.3456;0.4708;0.6439
"p_B[4]";0.32846168;0.114845669646419;0.1583;0.2396;0.3053;0.3958;0.5752
"p_B[5]";0.376711676;0.0355324507341124;0.3103;0.3514;0.3762;0.4004;0.4479
"p_B[6]";0.2201431038;0.108644815304801;0.05638;0.1319;0.2121;0.2976;0.4319
"p_B[7]";0.1572564758;0.0696631786400188;0.05701;0.1095;0.1483;0.1862;0.3685
"p_B[8]";0.319224678;0.0339244006829236;0.2555;0.296;0.3177;0.3412;0.3894
"p_B[9]";0.382632264;0.0331366368928471;0.3173;0.3605;0.3827;0.4049;0.4497
"p_B[10]";0.2238734464;0.147790032092892;0.04302;0.112;0.1897;0.2974;0.603
"p_B[11]";0.0266335806;0.00784126944659309;0.01457;0.02103;0.02557;0.03099;0.04535
"p_B[12]";0.413858676;0.0203545492428725;0.374;0.4009;0.4136;0.4272;0.4548
"p_B[13]";0.471803072;0.0366354269751699;0.3992;0.4466;0.4708;0.4962;0.5443
"p_B[14]";0.0658340674;0.02025249645961;0.03369;0.05123;0.06307;0.07762;0.1131
"p_B[15]";0.304549368;0.12386249539855;0.1476;0.2081;0.2769;0.3706;0.6131
"p_B[16]";0.2216276182;0.14903916751867;0.04745;0.1098;0.1811;0.2959;0.6099
"p_B[17]";0.260465158;0.0250032826548417;0.2143;0.2432;0.2592;0.2769;0.3116
"p_B[18]";0.568919684;0.0207643434882819;0.528;0.5548;0.5698;0.5835;0.607
"p_B[19]";0.402767792;0.0237350114147871;0.3558;0.3873;0.403;0.4181;0.4494
"p_B[20]";0.389779762;0.0336097660770031;0.3277;0.3662;0.3891;0.4128;0.458
"p_B[21]";0.404734124;0.0262640624879738;0.3555;0.3869;0.4039;0.4229;0.4565
"p_B[22]";0.321531702;0.0183989913647695;0.2856;0.3092;0.322;0.3335;0.3576
"p_B[23]";0.274425268;0.0375677074757174;0.2051;0.2479;0.2734;0.2991;0.3508
"p_B[24]";0.395060704;0.0411177496564576;0.315;0.3676;0.3946;0.4215;0.4803
"p_B[25]";0.28372602;0.0172593176875721;0.2522;0.2717;0.2834;0.2949;0.3183
"p_B[26]";0.302154052;0.0170228666546231;0.269497499547663;0.2906;0.3015;0.3139;0.3358
"p_B[27]";0.281007266;0.0380568503463228;0.2099;0.255;0.2798;0.3056;0.3587
"p_B[28]";0.1617183568;0.0243880888575029;0.1165;0.1452;0.1611;0.177;0.2121
"p_B[29]";0.261995774;0.0217954542870176;0.2211;0.2468;0.2613;0.2768;0.3052
"p_B95";0.2700698474;0.242215020270227;0.02732;0.0874074998927397;0.1704;0.3964;0.886807498763385
"p_B00";0.564956042;0.200946876350036;0.2374;0.405;0.5414;0.71682499869221;0.961
"p_B02";0.2570924274;0.23267462520431;0.03103;0.08528;0.1749;0.3407;0.901102499864759
"p_Btot[1]";0.352794004;0.113060367067244;0.1819;0.2482;0.3518;0.4364;0.5637
"p_Btot[2]";0.337348064;0.114030755609688;0.1456;0.2616;0.3226;0.409;0.5634
"p_Btot[3]";0.365993326;0.134884697864851;0.1771;0.2491;0.3456;0.4708;0.6439
"p_Btot[4]";0.32846168;0.114845669646419;0.1583;0.2396;0.3053;0.3958;0.5752
"p_Btot[5]";0.376711676;0.0355324507341124;0.3103;0.3514;0.3762;0.4004;0.4479
"p_Btot[6]";0.2201431038;0.108644815304801;0.05638;0.1319;0.2121;0.2976;0.4319
"p_Btot[7]";0.1572564758;0.0696631786400188;0.05701;0.1095;0.1483;0.1862;0.3685
"p_Btot[8]";0.319224678;0.0339244006829236;0.2555;0.296;0.3177;0.3412;0.3894
"p_Btot[9]";0.382632264;0.0331366368928471;0.3173;0.3605;0.3827;0.4049;0.4497
"p_Btot[10]";0.04330575204;0.0432419636385239;0.00833089997658605;0.01863;0.02997;0.04989;0.1702
"p_Btot[11]";0.0266335806;0.00784126944659309;0.01457;0.02103;0.02557;0.03099;0.04535
"p_Btot[12]";0.413858676;0.0203545492428725;0.374;0.4009;0.4136;0.4272;0.4548
"p_Btot[13]";0.471803072;0.0366354269751699;0.3992;0.4466;0.4708;0.4962;0.5443
"p_Btot[14]";0.0658340674;0.02025249645961;0.03369;0.05123;0.06307;0.07762;0.1131
"p_Btot[15]";0.1512975948;0.0260069449728097;0.1025;0.1335;0.1501;0.168;0.2054
"p_Btot[16]";0.04404211582;0.0513469782299593;0.00888192498764783;0.01735;0.02828;0.0462524997973229;0.192304997466633
"p_Btot[17]";0.260465158;0.0250032826548417;0.2143;0.2432;0.2592;0.2769;0.3116
"p_Btot[18]";0.568919684;0.0207643434882819;0.528;0.5548;0.5698;0.5835;0.607
"p_Btot[19]";0.402767792;0.0237350114147871;0.3558;0.3873;0.403;0.4181;0.4494
"p_Btot[20]";0.389779762;0.0336097660770031;0.3277;0.3662;0.3891;0.4128;0.458
"p_Btot[21]";0.404734124;0.0262640624879738;0.3555;0.3869;0.4039;0.4229;0.4565
"p_Btot[22]";0.321531702;0.0183989913647695;0.2856;0.3092;0.322;0.3335;0.3576
"p_Btot[23]";0.274425268;0.0375677074757174;0.2051;0.2479;0.2734;0.2991;0.3508
"p_Btot[24]";0.395060704;0.0411177496564576;0.315;0.3676;0.3946;0.4215;0.4803
"p_Btot[25]";0.28372602;0.0172593176875721;0.2522;0.2717;0.2834;0.2949;0.3183
"p_Btot[26]";0.302154052;0.0170228666546231;0.269497499547663;0.2906;0.3015;0.3139;0.3358
"p_Btot[27]";0.281007266;0.0380568503463228;0.2099;0.255;0.2798;0.3056;0.3587
"p_Btot[28]";0.1617183568;0.0243880888575029;0.1165;0.1452;0.1611;0.177;0.2121
"p_Btot[29]";0.261995774;0.0217954542870176;0.2211;0.2468;0.2613;0.2768;0.3052
"epsilon_B[1]";0.33312013914378;0.610471855063035;-0.7495;-0.142025;0.3484;0.774;1.482
"epsilon_B[2]";0.2608122470026;0.618672162300081;-0.9887025;-0.1149;0.2519;0.669525;1.465
"epsilon_B[3]";0.3849385645018;0.687989023472797;-0.7575;-0.17165;0.3423;0.90615;1.732
"epsilon_B[4]";0.2049992659402;0.633740792856041;-0.8838075;-0.249;0.1268;0.6137;1.527
"epsilon_B[5]";0.4960697136594;0.264836855755519;-0.01059075;0.314975;0.4927;0.672;1.028
"epsilon_B[6]";-0.48597423178666;0.75845138246214;-2.011025;-1.029;-0.4138;0.0691375;0.810925000000001
"epsilon_B[7]";-0.9214012488178;0.591658081444766;-2.058025;-1.313;-0.91405;-0.562475;0.406822500000001
"epsilon_B[8]";0.2060596538018;0.263347273173663;-0.308;0.0319725;0.2041;0.3804;0.7298
"epsilon_B[9]";0.5251535140782;0.261785568132548;0.02191775;0.3463;0.5213;0.7003;1.046
"epsilon_B[10]";-0.5419928119034;0.98128243271955;-2.346025;-1.225;-0.5521;0.09495;1.506
"epsilon_B[11]";-3.05222398;0.547822961523979;-4.185025;-3.412;-3.031;-2.673;-2.041
"epsilon_B[12]";0.67626347733;0.23948964693546;0.2195975;0.513275;0.67425;0.8339;1.158
"epsilon_B[13]";0.94237349852;0.288622209848443;0.3963975;0.7448;0.935;1.13;1.53
"epsilon_B[14]";-1.985703718;0.475089790843545;-2.966;-2.294;-1.967;-1.657;-1.106
"epsilon_B[15]";0.0603683706772;0.673023905721217;-1.057;-0.4344;-0.0027145;0.484225;1.57
"epsilon_B[16]";-0.56130983790484;0.965416386490032;-2.257;-1.25;-0.6342;0.06339;1.504
"epsilon_B[17]";-0.1190131860208;0.250319015876403;-0.6214025;-0.2844;-0.1138;0.04982;0.3609025
"epsilon_B[18]";1.389034602;0.303505428007142;0.817897499850978;1.181;1.381;1.591;2.005
"epsilon_B[19]";0.6237637019427;0.240659975130625;0.164495;0.4606;0.61995;0.7827;1.106
"epsilon_B[20]";0.5602647460946;0.264114728013379;0.05001925;0.3826;0.5554;0.7335;1.094
"epsilon_B[21]";0.631475707762;0.246179404252101;0.1553975;0.4659;0.6273;0.7944;1.123
"epsilon_B[22]";0.2219070827236;0.220952317240349;-0.2175;0.0746375;0.2245;0.3702;0.652
"epsilon_B[23]";-0.04238983615034;0.288676721422457;-0.6221;-0.2333;-0.039725;0.1535;0.5126075
"epsilon_B[24]";0.5852892997516;0.285702117828275;0.0421215;0.3921;0.5773;0.7739;1.166
"epsilon_B[25]";0.01696758402651;0.219542678629833;-0.41781;-0.1295;0.019755;0.1655;0.4424025
"epsilon_B[26]";0.1190705053972;0.217599237072465;-0.3125025;-0.0266475;0.1203;0.2657;0.5432025
"epsilon_B[27]";-0.005372198412548;0.282918420226669;-0.5691025;-0.191025;-0.00311;0.1834;0.547305
"epsilon_B[28]";-0.8101787846154;0.312828848328624;-1.453;-1.013;-0.7985;-0.5957;-0.2305975
"epsilon_B[29]";-0.10853319420056;0.232658000339644;-0.575005;-0.2604;-0.106;0.0479125;0.3412
"p_Eu[1]";0.0793406798;0.00881251766734256;0.06301;0.07314;0.07894;0.08525;0.09705
"p_Eu[2]";0.1021968294;0.0119526543169373;0.08058;0.094067499900334;0.1014;0.1098;0.1277
"p_Eu[3]";0.0802356574;0.00838955587530001;0.06445;0.07446;0.0798;0.08577;0.09766
"p_Eu[4]";0.090292118;0.0233878444087393;0.05438;0.07385;0.08704;0.1027;0.1478
"p_Eu[5]";0.0888249786;0.00543699449417825;0.07842;0.08518;0.08876;0.0924024998985454;0.09984
"p_Eu[6]";0.0961343182;0.0096295036664392;0.0780897499843917;0.08944;0.09589;0.1024;0.1159
"p_Eu[7]";0.0761166138;0.0192732352557528;0.04415;0.0626;0.07387;0.08755;0.1199
"p_Eu[8]";0.0740943592;0.0127552753865363;0.05037;0.06523;0.07377;0.0823;0.1011
"p_Eu[9]";0.0844523906;0.0088641121863799;0.06842;0.07823;0.08408;0.09029;0.1028
"p_Eu[10]";0.067865061;0.00373771718390704;0.06059;0.06532;0.06782;0.07039;0.0753302499838226
"p_Eu[11]";0.0777581276;0.00578569991726056;0.06674;0.07377;0.07758;0.08165;0.08932
"p_Eu[12]";0.0680224582;0.00716929542027592;0.05492974997781;0.06294;0.06775;0.07273;0.08299
"p_Eu[13]";0.0582309402;0.00477493266064164;0.04945;0.05497;0.05809;0.06133;0.06802
"p_Eu[14]";0.0914203544;0.00605749450244848;0.07998;0.08737;0.09125;0.09542;0.1036
"p_Eu[15]";0.0926099474;0.0135567261366343;0.06853;0.08303;0.09196;0.1013;0.1214
"p_Eu[16]";0.0420299504;0.00557127708340795;0.03191;0.03818;0.04181;0.04563;0.0535902499772607
"p_Eu[17]";0.1027885804;0.00706408351665341;0.08993;0.09784;0.1025;0.1075;0.1173
"p_Eu[18]";0.0955985148;0.00621514081463066;0.08379;0.09137;0.09534;0.09973;0.1081
"p_Eu[19]";0.055649444;0.0085217240857993;0.03985;0.04981;0.05526;0.0610824998465274;0.07367
"p_Eu[20]";0.0584091576;0.00910524932034626;0.0415997499706985;0.05209;0.05793;0.06414;0.0774
"p_Eu[21]";0.0570427978;0.00522188703903102;0.04738;0.05335;0.05688;0.06063;0.06769
"epsilon_Eu[1]";0.21748771763764;0.463651168113377;-0.695705;-0.090575;0.2175;0.5267;1.131025
"epsilon_Eu[2]";1.0111815395276;0.505620163173798;0.03091975;0.676775;1.001;1.339;2.035
"epsilon_Eu[3]";0.6183229891756;0.581910643417269;-0.5155275;0.225075;0.6166;1.005;1.764
"epsilon_Eu[4]";0.0820587129453;0.842950271940165;-1.532;-0.4893;0.0627;0.635325;1.783
"epsilon_Eu[5]";0.18073234113092;0.510847931196464;-0.8134025;-0.1649;0.1803;0.522;1.187
"epsilon_Eu[6]";0.59070632321653;0.501281342133536;-0.3818025;0.2534;0.5857;0.920325;1.597
"epsilon_Eu[7]";0.13498019128288;0.871671413391487;-1.608;-0.4411;0.14515;0.7237;1.821025
"epsilon_Eu[8]";0.16743828743036;0.66634478244745;-1.186;-0.2666;0.1791;0.6139;1.446
"epsilon_Eu[9]";0.51453137464026;0.466935468141752;-0.393605;0.201975;0.5099;0.8181;1.454
"epsilon_Eu[10]";-0.61721107775288;0.383219568841018;-1.389;-0.8698;-0.6095;-0.3563;0.109305
"epsilon_Eu[11]";-0.1610971025162;0.425346473260991;-0.9991125;-0.444825;-0.1557;0.1269;0.6653025
"epsilon_Eu[12]";-0.6458507621092;0.492231581809315;-1.632;-0.972625;-0.6361;-0.3114;0.3001025
"epsilon_Eu[13]";-1.077598955246;0.42909496224197;-1.972;-1.353;-1.061;-0.7851;-0.281695
"epsilon_Eu[14]";1.0025307062458;0.493323884277873;0.0708685000000001;0.6653;0.9914;1.327;1.997
"epsilon_Eu[15]";0.7255150120498;0.571800732512827;-0.4018025;0.3446;0.7223;1.104;1.857025
"epsilon_Eu[16]";-2.041294658;0.551509455839934;-3.179;-2.401;-2.02;-1.66;-1.022
"epsilon_Eu[17]";0.913363634488;0.43976040484322;0.090646;0.610075;0.9004;1.202;1.812
"epsilon_Eu[18]";0.9169775786736;0.379865442370689;0.2039;0.6569;0.90325;1.163;1.702
"epsilon_Eu[19]";-0.93495409197242;0.586833271495706;-2.126;-1.32;-0.9232;-0.5358;0.1850025
"epsilon_Eu[20]";-0.70790147284036;0.609967560829568;-1.94;-1.107;-0.6956;-0.295475;0.4568025
"epsilon_Eu[21]";-0.892875377878;0.443983472146434;-1.819;-1.179;-0.8748;-0.5889;-0.0685864999999998
"Ntot[1]";3522.27844;1210.08881026549;1959.9749937798;2548;3185;4463;6131.02499801238
"Ntot[2]";3816.03354;1545.94074139683;1995;2751;3475;4303;7768
"Ntot[3]";2356.74422;889.423733935722;1159.97498948757;1597;2175;3021;4237.024997124
"Ntot[4]";5248.66152;1820.8019104074;2661;3862;5010;6381;9599.00000000001
"Ntot[5]";1997.47704;181.764592482089;1679;1869;1983;2115;2386.02499489349
"Ntot[6]";2469.73844;1608.11915260361;935.999999999999;1340;1884;3047;7088
"Ntot[11]";3145.27568;1450.19903087305;1150;2227;2807;3764;7314
"Ntot[12]";1787.19954;179.994085795081;1468;1661;1776;1899;2178
"Ntot[13]";2474.73906;209.036381461438;2109;2329;2455;2603;2930
"Ntot[14]";2041.47024;1426.20287394434;292;1025;1694;2690;5870.07498132017
"Ntot[15]";1817.15304;451.790935721104;1059;1502;1768;2087;2864
"Ntot[16]";6281.8915;295.320174603532;5732.97499787391;6083;6269;6466;6909
"Ntot[17]";1702.0136;126.783254315826;1477;1613;1694;1782;1975
"Ntot[18]";691.77616;199.871130544236;398;553;665;796;1135
"Ntot[19]";1788.81022;312.011762583322;1301;1572;1748;1955;2514.04998061874
"Ntot[21]";2651.06112;1748.40312231874;331;1365;2252;3665;6986.02499825561
"Ntot[22]";2997.56506;275.878951990034;2507;2802;2981;3177;3574
"Ntot[23]";7602.42548;269.911767905771;7118.99999999999;7411.99999999999;7583;7778;8174
"Ntot[24]";5255.00538;301.27110103125;4714.97499741481;5050;5235;5442;5911
"Ntot[25]";2771.61924;232.384837534803;2357;2606;2755;2921;3265
"Ntot[26]";5491.52238;347.780531607361;4863;5240;5477;5722;6200.02499803448
"Ntot[27]";6720.55528;369.817193325636;6057;6469;6694.00000000001;6950;7506.99999999999
"Ntot[28]";1175.92908;156.219440597597;916;1065;1160;1270;1527
"Ntot[29]";2900.09754;302.206004830042;2370;2696;2872;3079;3575
"Ntot[30]";6467.35172;371.346002550336;5779;6209;6458;6711;7213
"Ntot[31]";6434.4418;348.260032725215;5800;6193;6421;6661;7168.99999999999
"Ntot[32]";1895.137;256.78880295057;1472;1715;1869;2045;2470
"Ntot[33]";2686.40638;404.973912977984;2024;2408;2641;2911;3639
"Ntot[34]";7562.64976;616.052876590052;6476;7123;7528;7961;8869
"shape_lambda";2.616849104;0.750256545131909;1.416;2.071;2.529;3.063;4.332
"rate_lambda";0.000732660868;0.000226598742985245;0.000365997499666948;0.0005707;0.00070644999823059;0.0008679;0.00124802499023952
"mean_gamma";3626.7334;464.975443058763;2816;3305;3591;3909;4648
"var_gamma";5557328.68;2379076.2384767;2588000;3945000;5036000;6565000;11560000
"lambda[1]";3522.28954;1210.68398668724;1954;2547;3187.49996078431;4461;6140.00000000001
"lambda[2]";3815.61284;1545.72431785894;1989;2752.74996593902;3472;4305;7769
"lambda[3]";2357.683458;889.880462452857;1158;1599;2178;3023;4243
"lambda[4]";5247.70676;1820.61095664489;2656.97499541192;3862;5012;6382;9585
"lambda[5]";1998.89282;187.049415936345;1667.97499269046;1866;1985;2120;2397
"lambda[6]";2470.46676;1607.89659201023;933.28999791005;1344;1886;3050;7073.1249569425
"lambda[11]";3145.355404;1450.65544169765;1160;2226;2809;3766;7320.09997337024
"lambda[12]";1788.75426;184.982544805422;1460;1659;1777;1905;2190
"lambda[13]";2475.58638;214.629594081871;2099;2327;2457;2608;2942
"lambda[14]";2042.4925498;1425.68477137508;292.297499582954;1025;1695;2689;5867
"lambda[15]";1818.396364;453.248457083812;1059;1503;1769;2089;2865.02499574705
"lambda[16]";6280.3264;304.932365841993;5709;6073.99999999999;6268;6471;6925.99999999999
"lambda[17]";1703.38374;133.196139538067;1464;1610;1696;1788;1987
"lambda[18]";693.744018;201.338218137981;397.2;554.874998310329;667.4;799.824998827917;1142
"lambda[19]";1789.979152;314.807070311947;1298;1571;1750;1959;2523.0249951707
"lambda[21]";2651.6484078;1748.08677945076;331.897499632723;1365.74993133964;2251;3667;6988.0249982561
"lambda[22]";2997.83316;281.306507126006;2494;2800;2981;3181;3586
"lambda[23]";7599.2085;283.682971763057;7086;7400;7582;7784;8197.00000000001
"lambda[24]";5254.13352;309.681533684939;4698;5042;5235;5446;5922
"lambda[25]";2772.19096;238.026016271262;2344;2603;2755;2925;3276
"lambda[26]";5489.81716;355.958195936376;4845;5234;5475;5728;6216
"lambda[27]";6718.74416;378.339889474179;6033;6463;6692;6954;7523
"lambda[28]";1177.7345;159.740316697838;909.3;1065;1162;1274;1536
"lambda[29]";2900.67768;306.432374996224;2360;2694;2874;3084;3582
"lambda[30]";6465.30416;379.21992959468;5754;6202;6457;6712.00000000001;7226
"lambda[31]";6432.20756;356.695490064423;5779;6186;6418;6664;7178
"lambda[32]";1896.47218;260.500203134593;1463.97499167146;1713;1871;2050;2482
"lambda[33]";2686.76324;407.879776579993;2016;2406;2643;2913.24996782313;3644
"lambda[34]";7560.78152;622.067702160312;6464;7117;7526;7962;8880
"Nesc[1]";3522.27844;1210.08881026549;1959.9749937798;2548;3185;4463;6131.02499801238
"Nesc[2]";3816.03354;1545.94074139683;1995;2751;3475;4303;7768
"Nesc[3]";2356.74422;889.423733935722;1159.97498948757;1597;2175;3021;4237.024997124
"Nesc[4]";5248.66152;1820.8019104074;2661;3862;5010;6381;9599.00000000001
"Nesc[5]";1997.47704;181.764592482089;1679;1869;1983;2115;2386.02499489349
"Nesc[6]";2469.73844;1608.11915260361;935.999999999999;1340;1884;3047;7088
"Nesc[11]";3145.27568;1450.19903087305;1150;2227;2807;3764;7314
"Nesc[12]";1772.19954;179.994085795081;1453;1646;1761;1884;2163
"Nesc[13]";2454.73906;209.036381461438;2089;2309;2435;2583;2910
"Nesc[14]";2041.47024;1426.20287394434;292;1025;1694;2690;5870.07498132017
"Nesc[15]";1815.15304;451.790935721104;1057;1500;1766;2085;2862
"Nesc[16]";6275.8915;295.320174603532;5726.97499787168;6077;6263;6460;6903
"Nesc[17]";1672.0136;126.783254315826;1447;1583;1664;1752;1945
"Nesc[18]";691.77616;199.871130544236;398;553;665;796;1135
"Nesc[19]";1779.81022;312.011762583322;1292;1563;1739;1946;2505.04998054915
"Nesc[21]";2651.06112;1748.40312231874;331;1365;2252;3665;6986.02499825561
"Nesc[22]";2987.56506;275.878951990034;2497;2792;2971;3167;3564
"Nesc[23]";7548.42548;269.911767905771;7065;7358;7529;7724;8120
"Nesc[24]";5195.00538;301.27110103125;4654.97499738147;4990;5175;5382;5851
"Nesc[25]";2739.61924;232.384837534803;2325;2574;2723;2889;3233
"Nesc[26]";5461.52238;347.780531607361;4833;5210;5447;5692;6170.02499802493
"Nesc[27]";6660.55528;369.817193325636;5997.00000000001;6409;6634;6890;7446.99999999999
"Nesc[28]";1168.92908;156.219440597597;909;1058;1153;1263;1520
"Nesc[29]";2890.09754;302.206004830042;2360;2686;2862;3069;3565
"Nesc[30]";6438.35172;371.346002550336;5750;6180;6429;6682.00000000001;7184
"Nesc[31]";6406.4418;348.260032725215;5772;6164.99999999999;6393;6633;7141
"Nesc[32]";1885.137;256.78880295057;1462;1705;1859;2035;2460
"Nesc[33]";2682.40638;404.973912977984;2020;2404;2637;2907;3635
"Nesc[34]";7556.64976;616.052876590052;6470;7117;7522;7955;8863
"test";0.16756;0.373478829558949;0;0;0;0;1
"R2";0.022934581224622;0.112111937885317;-0.2479025;-0.0163625;0.029555;0.08638;0.2049
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment