From e234aeede5ee5067d6a413a0b3371b653c41b54c Mon Sep 17 00:00:00 2001
From: sanchezi <isabelle.sanchez@inrae.fr>
Date: Tue, 12 Apr 2022 16:18:26 +0200
Subject: [PATCH] add lambs dataset + multipleFit vignette with foreach

---
 DESCRIPTION               |   5 +-
 R/data.R                  |  17 ++++-
 data/lambs.rda            | Bin 0 -> 12728 bytes
 doc/HowTo.html            | 116 +++++++++++++++-------------------
 man/kfino.Rd              |   2 +
 man/lambs.Rd              |  23 +++++++
 man/merinos2.Rd           |   2 +-
 vignettes/multipleFit.Rmd | 127 ++++++++++++++++++++++++++++++++++++++
 8 files changed, 222 insertions(+), 70 deletions(-)
 create mode 100644 data/lambs.rda
 create mode 100644 man/lambs.Rd
 create mode 100644 vignettes/multipleFit.Rmd

diff --git a/DESCRIPTION b/DESCRIPTION
index 66a936f..2b3f3d3 100644
--- a/DESCRIPTION
+++ b/DESCRIPTION
@@ -12,7 +12,7 @@ Maintainer: Isabelle Sanchez <isabelle.sanchez@inrae.fr>
 Description: A method for detecting outliers with a Kalman filter on impulsed 
   noised outliers and prediction on cleaned data.
 License: GPL-3
-Depends: R (>= 3.6.0)
+Depends: R (>= 4.1.0)
 Encoding: UTF-8
 LazyData: TRUE
 URL: https://forgemia.inra.fr/isabelle.sanchez/kfino
@@ -22,6 +22,9 @@ Suggests:
     rmarkdown,
     knitr,
     RColorBrewer,
+    foreach,
+    parallel,
+    doParallel,
     testthat (>= 3.0.0)
 VignetteBuilder: knitr
 RoxygenNote: 7.1.2
diff --git a/R/data.R b/R/data.R
index e16b3de..9c114a1 100644
--- a/R/data.R
+++ b/R/data.R
@@ -24,7 +24,7 @@
 #' }
 "merinos1"
 
-#' a dataset containing the WoW weighing for one animal (merinos lamb) of 345 
+#' a dataset containing the WoW weighing for one animal (merinos lamb) of 345
 #' observations, difficult to model
 #'
 #' A dataset for kfino algorithm
@@ -36,4 +36,17 @@
 #'   \item{Day}{Date of weighing with day and time yyyy-mm-dd hh:mm:ss}
 #'   \item{dateNum}{Day expressed in numeric (portion of a day)}
 #' }
-"merinos2"
\ No newline at end of file
+"merinos2"
+
+#' a dataset containing the WoW weighing for 4 animals of 1296 observations
+#'
+#' A dataset for kfino algorithm
+#' @format a data.frame
+#' \describe{
+#'   \item{Poids}{weight (in kg)}
+#'   \item{Date}{Date of weighing yyyy-mm-dd}
+#'   \item{IDE}{id of the animal}
+#'   \item{Day}{Date of weighing with day and time yyyy-mm-dd hh:mm:ss}
+#'   \item{dateNum}{Day expressed in numeric (portion of a day)}
+#' }
+"lambs"
diff --git a/data/lambs.rda b/data/lambs.rda
new file mode 100644
index 0000000000000000000000000000000000000000..7338d909846a0076a2f4cd4fd23454cc40c2f6aa
GIT binary patch
literal 12728
zcmaibWl&sEv+W?kf=h51G`IzK5AG7&gF|o)?ry=|8Qk67U4py2J8$y7d+(21uj;Ko
zv#00ms?(=?uU_4!Mp)B~i&;p6QdxtryeApp4CVdt|HCE&(M$VH`n6IRpqx#pfEWM(
zFcCol$!5aZQ>`OyUNR^SB!8e`I}KWMWD5cSf`D_rRGO<OVfWkY6aR+4C48q&VstCP
zrkOLLj2a6|9BCX8cYH;yEqAl+4dV!Zn6g;`05d2-7@t|8>?yz$fOQCJj@8Tz56=uD
zW@_p-T7eaYY|a?UoJishMKN#ADsRReXjM4Wg*h%S`+f~7roa?Lf;7XJ6*hEFPL(Z;
z-G$&|ofTre<Bfz#EsFJ-`58|cp*&&*6F()(CO=(>0Ut0+DK2_#oSDLc`w1V1OsG)O
zUnsvjWN02H#HX7T4w@B@Qam)3q@Jj-q*k)z8Nod>Q@PKW?R(u!R-uwtYMPX*nR}t~
z9j}zNEN@Y&MYOW{ai;Q|8^+vqn(_?mn}SuyCG`;=pHSZS{5up(0B=$LtvQsuL;xw~
z?bPgCHzk`)rk}CDES~wX@f3`>pdkPU6&Eo=&=_D0Kw@zhoPt4%VTPhiPNs}xox(GN
zNi`3Fz%0PSk(U+YW0O~2PRWlpi|>);EAB&)GA;Qg%aZDjfq|FG`lguI!<q$R_p>HL
zdrlUQHy)bm$;!pB_?c&DmTHZJ7a3<zI48>+x;xk7Zh>eF-3ONt1EZ`w{Iw)imOZF2
zwdgQ2HkJAruPBmIUNSUA;@VB|C{{paAT@Z8jlJkN8o^p#_WN<>+>pPa{5&6Jrexi$
z@^Vr9oNV#zh<hZF<S|kxpHMxDazCH=h=<A$QKUSX@?4u-gy6u2sMF!^KHRsVQ(<HY
zf=dG7;LLiDD0Am|o7ozl*2DU4&ZU<SGTSFU+-u$_e4$ZCg4;oLp_ICkKE0DKRTUNb
zRxFj5{_`dN0L9c(WWq7OWb*^>rE+~kY2*jwD~-YgMa(LaC@J#epDLI0NVGl!>#Q=5
zlO@{hK#P;aq;#GTsvt2g^YnwMgXETnP9@-XSKF~z24z2$fUZHR6dSw*XJ$gAKbT+i
zXVqQ)vKh{Pqh3}eJyX^N1tQBk$!WKJqR&O#r{|zwLDSKY7VnrIDQ8&bqAAa2A1Pni
zJ%b>%k6pTMOspJF0BVe?K)?$8E%ur9j@=D5X}_uh`T)0<c~xQ!pO4Ajw`^yufG%u&
z^Qt=UrGUe-uFWb}@w+C?eFf0_l9hnVI%l8Zk2b@~$2ODaBD~{@idsTdzpe%D;<BRi
z%JeaK)CiG_y@^t8l{Ynsg`%jZ%7R`!nnn*zye>AJZ|!`Q@oc7Q8uGMe^N)3)7EJx1
zSq-DfBG&fcbaPt9<34ib0Z;x4Szc&fy}WDTPRz$j!_BqKSgH!FKeEJ0P{Z!cC5O!y
z@VlU8K!bb{!5*=4h#%P>RCfCEdLcP&g&DkjcFMI0TQ_vqY%XMjDM%4)H26oF`sDX3
zo(Fw5l9r5Py98HqQq+*P<@LtkFsl_2yR6=`H@|oFw-}G5@A%dl3hSr9Em4C8Qi+QA
zYqqT;lD<s`Vg(w1sh(Wii%x3z1Fpu>r?<qTfeFrc$%D*D8GLuhVuV};_txb~{A%}>
z%NK}3qQYzLj!s1_4qAiKc<(QT&~5e09|G<&=PFDPQ(JVm8~R&h>L-$HHKZjdk|7VR
zyZ5fGzlpPrf=<StmKpRV{wmq4ZCxq7a9E6<EIX-)zH^-ft(+p6pjdawr5Q%*_FxHh
zR8ACUKe2Hih_*lv9<-jH8!T^qR9g1Ct&oC9N*Wu={Zbv|!%C`#R~zZ|6jjlomfIk2
zqB0@BYt@(S^LNmMl{mFt*AixKcuXBvyDEjkYbd6jbS8aISxMEn^F{5WM;M73a9-Ys
znKoe$qV^t#$%*j9^Hot*Wz)t3d1pE-rB{sKt*=k3s$lyUogcR}xZYowmQ0V;=>+;t
zuF2dHD3gMKprn?JiVmej3S`5V8;*jzhYhE+n+E}NSm9y<ey^)}827h{V>5QHgT+_~
z6|yA{o-a8E^-ajDEMChv-8?RLRAE$CT5f5q8xAL@+^rv#*IOMVVdX6X-W&I&?%(Nn
zv({e53u8xeD>07lK#i>vPoAA_Yr+V*AinXNldqr`|9aiCC=Bk!h5}6F#_+M*-`-GX
zI~M#LS$OLVFNHSjIi0b$$_-hc6zucEx>jvSoC#l(Ln?RbCwh6kxoI-jM<y3u_&88v
zRb;<>`M6=0jg}90J=Rf$lM0_GUN|6rN+KNHU-Wp7%+;scXqY&QO|=sR`IqfN;XeLW
ze%9q_5mEvE>{L?>q{h-K)^7u4xn!JZe&8?+&-wMj>&&g~mOePYsZOrD{lXFh83?55
zI%OSYU`to6@8%}F$*trWjoA@|kfK)17}~>P#C2$&wVjjM?mA4a7lq>lK$2`%G=Ch$
z9kKkSwkzMgj2i4s!$Vg^X?oO_6=QDh`2OU}VOpybsH7o|ec^30O@47SX8p>201qel
zCLsL&!jX3JTQ~2_JJZQ?H%ua+ci%baroMdMDx&@T1GIbF;b{`Ml9l&U{5pijuh_4x
zbs~{ato5=5-`(7*^Rt~nvWxp*oPpPv^UO~)6`>!6E?WEE2S}M5ccpF0XPgQGRp98S
zB7LOpr8PUz$#wjcWsFRtHiigE#QplKp~lpU>G|l`Q(z^bwL|R&3N>E{l{Y;7qVPF5
zJJ5DsEA7%&?T35L*n(GY(fUb-q@k!7^V8=G==%jooUXIA$w)YI->9s`vaE9=Mam#q
z7YK)(j`M2AOMOu?RJM5@KCj;Grf3%GShhTx`bX-M3WPn1_zomAQpjSOqTlL+kyP@B
zbZ>t`-mPzs5pv71w4!$AwVkV3qS~-j>dK-Pw5E?79cn9TviS@GbP3%`7yJ5)um>Yf
zO0W2bvZ;#0@)&5{xZl*2pL15!6dn(dde-l{Vex<<5KV~PgERk=UkNwA%k#{>bJN#!
zneEqBf@!XorlQ!U5E@Wep1W*^4$Cm}x{-<V+vjfAC%t(PC@edQj@FiEK;U!|fBcy#
z!F`}NHVWgp3sZ&sbKy=xCRbU3fQ$8@rKfzsrt8Z`BxsT7!!~I$-<K2}mUh`gBUtwf
zPENZ~^_N-iGp7C|V)!iF_ZDVE36Kv6k63Iz@#g{O2EM%X%I(?81@}kCv50GK?u(mS
zmN%$z`9Z}81nTgv%Zgg@7&<#8-0V}ypR=(2zRb4n*<No9DXz+c{G57SDP6zDzc}%F
zQF?v4{YCPN;Keb&eC;9QAe6BI7bo%X(uz3;2VY5`8KxqZ;CXt(s`_<n!<wGr<a`sC
zj%kfvZwQtI4JezY_7aH@JKoc#anbh8^YPa4>C1hwdbO%Jhnj|f<)GHoAr|#pFrhp`
zO_b%8i<KC6IzIBC`#8rIS=X>9$LPuALFv!STxCh!Ck(8pj@9U_QN60AsHjQYz%}+$
z;_k5g@-EwDyvn?)qMRv%+G;VMyXLa;L~lin(M2a5X=!ehfx)kFy}LA(?hLj~J*!KK
zbMv#9L^k2o+4%#iZa864jZlf>&UcO}nIC-@pmrIjz`dWQjNjiLAH4OP)}K29gX~W(
zZtd3DbdZC0&8|Dt<T^J-Olx)jlw;}|I$(CrBV`)azCT*<SGq{QdNnV-eoNHwyyLSy
zFt?UZdos`6Z#g-ocf?%BEa!Jm`8#Z6k~pPDnXvqap7pfM@xEHaR!`B*x2mRUW?}i@
zV^&PZ$kg1<qo{Fub<LcS_SD+O(Os6U{;YmXY`njJZ9VlGvz-8QR!S)uEO`F|RaI5>
zFCb6_8+h>#_B5dXH_GW|X}K=|04JaS-U`6J1OU2asbyKa{>Sv6#jl$GW%$omgc!tp
z(f<uyQJ1&`c~Kz1E4lm<GR*7ozqdj(`T%ga0P+BgYp|(f=)det4@duf1ptQkf0qAQ
zeEN?Qs;XLlCGBpcNz&36%db_Gp9_~JEwSgpuIm5y1>jG0c-8{yKida?{>!HON7eS6
zLbd<@?f-wQiy%<xFYx2aX(wh-G6nBcvsYT!#mUVE1W|?fd5b?Uh<G};*Q>L#$}J@^
z=?dsB{xYl3?%(r6D%k~P5ARWteT@f_`m(5FiZQ?q`T4{G6!~z9K+LEL@@M{v0CK1%
z35d6E?(hH(9|<33s3OJS&sYz+F;G^BVR_Je$t0+pSLlF!B7I?DXtM7IH`)S1meMIb
zzuXq4^8wG(m@#AFZz)+fp%%PcQd)m-&er%0l1iIHOA;?I&$+))meb_S1qK`yg{#5U
zRQWVh0o032a<w9)C7~mk$~Zx&g0nc`an$y-C35#A#WWVG%!M;KG7aIOeMuBLEqEyj
z(EhT#?4m983f!UOK}$%KNA=YHaCmAd^|VQC%H#|gp^{6^#pu0^oN46yHkv)jDi@yE
zHT8iU!uV3XLLB|@%3-d}<T@Z45IRW5+<BRW<|+2eD_|U5P%O-~+A$W29q=<8NZN-u
z193kT6r(=_ugir~LvG(y@~RW9n3m?ij%?KiY35b_$$>rD8ZfmYnG-351Sf3G44+fD
zG>gLyg!VBsGlW564gtc#{aOlQAE1N}tp-{dGg;>_LHLUZTjBTu(yT;8WMBYLI4jnu
z-8t;tIT5nVUlGyK06;Ty_Dz|fRCMz~NPHMTI+JyE&o9aq!KEq6rGOQjX{2Uy69i#l
zMJ+|Noj6*YGSVv28m>z`F=I7Rc}=WK?40+rPvtQ5pGt?KS3-w`9MK3AWr~51SKn1J
zW$cX61yPjHJm1##gYk2Z<v<++VANp=eHB8L3sAZbhZYI;7sR2H@Dl<;z{8Qp#z|0#
zh6O_^i6fP)J}v&z@BXE9>5K3LkB$>4TO1vjFl*6zVm_SdGS80;weqxq8`!OSi|a63
zsbD|P5T3(7**fdOr`U6JyKK#oWfam!jhI`=1f$^(gNVb%5tA;r!uz2)8lqVMjbvAz
z8#%<0k3*ePuc+)$&89~?I~-3blZ-0!XBq(tCdN1h*;QYm99lu1<9ie$V>eyRDC1Lp
zo}|968m4gpwqHnUsO4yKX+_J)OVTddpCb?=H1zUxHn}i_GPlq^jl()a<_e1}>#VGl
z8S1kyhTxGe9R9LD!1vK~b<IC>Kw5(scJtBkWerw%u1#X>(2EoZ7f1D_UsaA1hk!t3
z+Vu5}C`-O*_UHn%4)6;yhV-p{$HU%x@_Kve30?~-+=F^2EtJToxpLWaTGVlo3O{UT
zV#-zd*+9rREFSU9Y6g%J5k-RlqEXBCOWCyWCqM8E($dn5m0^}y1{i%^EG7{hi6%mo
zh#{9wH>H2uGD*}JF5bv=!pi=<=@9ynY3sJAzU}agGy!!xeR;doo)sG*qe~N|@Yz1Q
z#59~Rwu&-cDEZXS={y3F`_k3W&BWZ?oIgO`cUX|V>=TGZc)qrQ-;^Wt_<{9kvPhF{
zusj4$;5|DMPJ-1xeEaUztMc%a>-(ME&R|sET~R-vFHn`FCc!rgVy?T{1{9Wy&C}U_
zAq{@!12|;oaC!c}_|3tdKT8kslE+|jWb-jp4lKOuRG8g1x|bne9TX8cylqQpL_zxi
zSb!obsC}Pt#W_x&b#);P4Gj&B@v9LQ5`hV#lRhPSa)}KOGMvA*I{d6dAb)NeqEQ`P
zy%Qo}QmN4t8J)f8{Aqacu%*0res;<~#nN>^k$ed(m6BIAqn+^D9HrJwG%?StEJ>2L
z{Pt@WE9|7UISmUPsr-*!gFWE)Ry#Dp`A1E&{oYuZ!_XMKXXi2cC|%20=!h+%;g{;m
zdHxZ)aQbP$K?roK7=!4y&4!%pKIa#`Cgb6Fic8Bdr^Br{5;4-EsqGQMvkeP3uaw4;
z6`k^RSnK?09L>ZF=52Kvb^sv@Ij#PWt*eJMh9qe>G0sppOEPg1()(%QD9R9nCl61s
zb1k$jK^1TY1ps&mZT#BC9e4JYlZr=xi*O9d;Pfzzw#bBX%Y*Q*P0RsW`#k%vtm<GW
zC;MTEd>)es)e89>G3lnKe!G{bVUC~_V7+C}1O+4*6Pz$qPNiW@a;q#~u&Fle4{yTi
zLd80xVLSIAve2a0oKXEaTKDEzw8L2VP7~i1Xe!MOJyeXXihkT{O#@|s&#qA}pjVld
z8py_azVCZTjtKAhrKP#)Z~f?(0p?!cwm@>vRq(wx3qI}J)saI|MqTI&%cA8SIoW!w
z7os`h*LiM>pYjwD(c%o)(m&Jo7hH%;kCJ+&SXDzp!=Z$tljcGr6_Xl%BSWPdo6}t}
zxx2Aad=3K4<Ghmbj$Pa^g3?3a$kP{G`((z(#`dKpYF|vdLPdLk9BMveENBD1GbyN5
zA7s5(uxVnL3RT!U&iM9#8-rz85TX(8qaBByDH0V4?Bz@A7v_kVFeNykXgdcoVEkf5
zbD>NR5fYtVuoF#KQW33Qr=8-r-OIzp+Hgfn(DNwuCuIqGd<cK^!647~?>XN}8(K|#
zjUgal674*~?e|8L$Q!BzjVpih-sZ!me6IC6Xng%^H033eFkD=o#>~m>Gu<O8uOrpq
zAQoNB`Cj{l?ni^6|C%3=5~Uc<=MMssU<kZMIkccupr~+Aa#&1?7EkNHgYzakB?{fu
zR{M;AX?agMI{vNoJpTD=XE3@2^Lx+;8z2NeLv&cmd?{4eC?#g}?sb3m_mc*T@o-OZ
zY52<a7PKn*RBoj!iue_Yh&NKBpTg5Lu^V7oR1Xgp%RN{c0_a5b2+%{u9YvNC7=E5P
zdggy$<c-)pVO>kl@~^o=NoA!|sOwOUIAlhfgwMqxjl(>92vILxDes2yhi!h|sViX3
zo6Q=SpM|Pa3OQB(6i{+aqlJ~-&(KYS!=pN8ol9-r3}as2&Lm^zi7wB^EXiHs_nv?T
z!Im8YZ=%FVCPjVrRoybTc<DD`MQ6#mGyZ2SWNW~82tU~NKr1+L=-I(CXi(z2ZLmv0
z%_v=C8ML4rA{qo!^Ce0kI-2#^je)SO0B4TZ&Uv(E7)-IU6dWokfV0*arOvZC05Km8
z(W14(-n?YCfI%M(g5M7iN!H*qCH!C*qZ2FdW?T72(D5q<4ENMKfKS7TSR<lyMD}3o
znPvRyYjn=!WQ7iV)vKq&(&G3jS41Ycc?;v%oep0Z+?w6uDTVHR5G<5$*WK(g`Y*$f
zIi}+5A0Y~yAt~Bt%bA7zz27AvL6|Jy<Av333>z8w@w0#nE^~x|@E^}l+6&S43$ah<
zW5et?tkr{wKiVAq6?!U$3?_@}F*xw~$FHs4-y-@XsN0*fhsbW^at}<Bjh32!t<n4t
znSMeji8wrW0@fHoq6Fa??;1j|9Ce4yNX}b=mcDzy&RA0f{T!>CP(~LABd<=qq7s@i
z45=P8jPB#f5~2`t?%fx}X$QRWsQ8{i2V{^wgLYOgR(W^1J1-yYxxV;0vC$@4BVdWj
zh-_B`16iw$u!cHJZ0?5iSizRJONJr{1Kxv)0A|Lyq82fR3+J4NF)w9)-k)rqBtS%Y
zswq%f6V7VW4?fvF$AHjOu}l(Y8%Z47fk05S5`LA$IP>o~ty*3i?T@0iEt~$w=p&!4
z1C!p)xSog{Y#OBw)CEMI#C=6e=4yKuG6_G%3?sDM{-#Wb82`i>v5<v5!ZuI4NH5mW
z=8jPPG#oi>l=Tv9JqzvBvn@%%Zb4i?-lRYQze-Jb@eH1P5!Y;ZmV=~cUz4C3OzO;n
zrOefzAM}R0q<Ak_)G!)R*ww7}qT3FIw|{KcVs=0TZOse=MIdxPQMC*<$5m{D{(9Gh
zCR?0TXzuqkmODF9_hm(XjQ9Wt62OFi5<I3Hae*jG(~n-#G^|~AO*ZV={7|`E97G*o
zn4yG6W7dsMpkz0m^3wpZDHbEk=18TQ=4prGh?e8#5o?oOXK(ikNJqA<Zoj?2NqJ+C
z`ttsQbYYwzy<sYXUoP|bOqRQu-uMJ>BBm$8i94?TVp~m{P?jdJ@4!2)yYzG5z2>~l
z{w>Tb*K7KZ;#!S+oC8}8Bf!*n8r$-?_1dhw@EqGLj%Z*yP-y=2SZReMaZLoI9JM^7
z(XUDKxZB?;fb+LDOzr+8Fz&47eYWnjiKEIkny(v)KiYJ7alUG&d^F<|{_$O#i<C?I
zTwjA@qq}sg(f}FY5mf9!Nsv3-yiKiYdwJnN?@3~4w|snlWu<K{H^HgHhR+yaaGbcW
zU2k(T5f!!mfUL3ah%H~c*C=n7VnSZeCGF{4lk@AUsb7PGDhOzy9H-o`iYA<5Mjf}i
z$S|Lmt*pr5Y3x^&<JLB=GK%vnxpcdk?vlpEXLT=SWPdojKOeSrA*nWxpmF5F?`gR#
z>$^#*dFwib)b7$F_hQ;<()h_isn#d%b-c_Cc1U_mNem>e*vZ5{tS@SX^WV^BF)&+_
zky-qHs6^{LXDmDpkOY{3tXynNZYFv1icDt56EWmn;>%SHj73Pb$0j8^Le+}8ryb<z
zC(I44ssFO^uoj3l-_KS@RQYr5)@!lXis=94eV0u+2;8gDRv$OBx#d3kF>b@v8_<o}
z=<-5Tein4aD_=e`AK0|cT#=ywWwdX&5VlzPMY#O>*ur*v=AO|_v|dhuqSTMDVy)0d
znJ`>7b+5=nLn?B=oPv#Xw7?v_zE$pMg8j-Lb1s&1u7qp##IgClI-Ycmu%-0p!?BxY
ziGgXW^yZn=pf=SZCg4|aP72FD*P2D5mB(44k5td^w7s>;q=G_Ct2V!{Ia4KPccxNl
zgWoLb4sOV+jnQ>xdV{P7Oits13gBnx!kM@c?ZOb4(2WvsmBetuNXi;gq9xTd#blN2
z75p8?sUa|?wH%iyLXILYCEmm$789|KZ~?kG2(U=5VipjT<dS3P+l4$SI8#5W3?r#q
z{70jeqYW6cl#680wm$<Ii8w_a2JO&?oO4P^QaG%J4TNdvRl}IYC8BoC2K}gd_I^Xa
zk0kD)0&1}BFINylL}ZnXVt%rP=2ZvgqZw?cFBq#jvmDdz(n3MAP{WDM!bt`|Q_f?S
z5=a0;hXeXoe<(d3XEZ`ruOeXwppr3SBja5$4!Nd^Qb`<^s`zqLC?)+Bhw4VKtogN0
z+l-x!D_QTl?KdXblEV!of!_K`P_+<ZrC~$ShFOyX7&e3F`P{_(B;y&bwCT5esoO|N
z*VtDT{*8i5w2D^y?#Gu3*v*ugPvHXvOLdF}gfwyAhTE~G0X#M`PZ|()i>zFzp_j|C
zL8GS}+!7)aA-%Rgg5alI^89degXRO)OI#PX!_Fy%ZAoM4nia8roON2e9Anh&eeR7J
z;B>qkiz~-U9!SLA{%knFIhcD!%{DQusVIylMX8OZA(~_%Y%Pwg+zu&^h6^9LRG7w0
z_m${6G6gmq!>HqK$GDLgMt=o|l=SXCec+}4DR64Gc+r#&bzcVivtKsKEU@JoV6Om)
zCdm}m7J)7#szR>)QK|?Q8)|{a5LVPRB&b35n7czlBZ6j4UOgHnNzv4k3QM_NpYY*P
z&-8`ijUj=CM89Ts?=g>Ni|B_)#Ao8vy6S->NhpGwnc{cncYlzM>T!Rd{&pN+kJ#JD
z%OK}Utkp>5Lm!j2*&J;^tD(uJAy*_oqoUM+LGy%u2v*H?xVbs0RdOU6sIHOlJppCM
z-xvQ8<$|lcPRqy%2WzEDn7bcQFi^mbu0UB0bkvr0d=k4+`|{IN^TO1)6{(>ICO<pW
z8c7`m-y!=sr(m?>-vYGhU>OuoiOQ7>Zww<At09=(72wMTm_qRfw;&JaKr0XxWgkT@
zIUKAdOekEcJG_vegerpQgJ8W`?|?)72ZLkuTKl}p`Tkx!Tg~4Cc7hA(n(&J5HQi~w
zG!r<zi-+fz`=}D(>wJY%{mv3(8pt8;;A(ImS#fN+efqNoLXIJaYe~YuDFk)Mwl8G&
ztWg=<MyioTQQh9b?a@<7H|xP|qHDc-bd~Quyo4V=b|62Nj=b!%rZ(r`;b;b!K3d4S
zxHG&ZI?sr)JGtcKl+tC=9a;4Jv{Vb4b-cOYGC}KUQ#bMQhJ}TNvHN_|*8mp)Xv7O8
zaSnse_U-U>aJLuQ)o4F$D|4>i8Pt4DcXa&KPxPDh79<Qcb+-rA6aCHU0tBT^?kPMg
zQh3Wt=AH5no=#PLVr3L4j_BbQ2}Dh5e=&BQfA4RcdPV!wdkG9M-=?e<86-KrnX6*~
z0dZ8m{YnpPab06$y(uZqK8n2h7ua&yie1n+XtdJISaGPQO{Q8jJN=kSW2K6F8&)|@
zj-8CDQX^oT${RD*6`(yFin@}{fAT2105;!^f^(34$uS0*1>z<B4RbSF!jx&QCx8SU
zO|Nt8zUYTdR2JhuASVJhk>C`Slfsl>VbOExo1#RlFEKVfFJzy!WKzIkHyH2wOuDv^
z<)#o>nO%T-zYEx<)S(dB@Va_+fo;?mjEQj}K@<YQsmT;lXuv}K65{m>FSVGrZf2m2
zqW_?AJZX3kiA{d8e?r-pkwFiU17U!eazSuXVW}uP7r!MxgXa)UU*JOQ_Ze`pe$RoG
zY3Yf>pGvG;paHbEC}LJea9t3249A;j>d}ydgal7q*TbJFPk??KQ^AdI6>+E6+uLKu
zLrvXh6gEA#=hCaHpQ+~6fE{{PXD_Y|#XRvyg5;=)&0eCUV3E7~2mFlg@aYawB?<+}
z&{K<u?2u;M(J!nfaYyIO6a@tZS-2|A0+&-=2D<I;cjrqSwRJQZ6}i0Z$a~?Tde?Kx
zcdX<Rv81BjE-Z7Dt{c{w|E?1Get@Z+={_i#K-`#rp~BZK$0`zuvF|~8)N}Nim1tTA
zVp13I3iq!&R3%q;qf|h}<a%o3fwEPZZLnfkPc<xaX}ridvYZ|b=cfd~rG}(rP+m~r
zv6@Yn5M^Xf`AK&ce6|H?4p2q7S4>?xL;m5`x+0HLQc_ab&X|j#mU38{Y?MRC?kxY7
zNnv^R3T_vB7p$Us<Sncw3mY@Z9xgUIdr@m{ar4+#E-)6RYj9k|*-@_RSRM{zNi`*L
z4_4d@Oka8u{C1u7GiosPIH&}3tYfzA+&x~BibkLJw!x}<hVw2K4GqIyNL7#UdfPSa
z4M}fXA<qUjhnN!hx^!+BxF=^HrCu3hHJl|ubTHZtI&@F3BndMdj=st3Zr(h(O0xAW
zOKW@CC<yc{(L|2tLl9DO+fI&4HV{*E>4xJF$qa|VTBOiZky=7mZtLAyRhMls%q+^)
zVqb1D;27kdm%)v_Nf@GGTY=xMK5Q_La?exmceOAHTI&dpg*-r8Llr*kgUTf$#zd(v
zn)-*ouX>5o;rCB><(68z#07__bfm4P^p=`?@wx%Xw-y6;JD!~Dw(_M{pT*a}11Vml
z$0a4s<#x@5`id(iK!s5p9igv_Z~gNPm}gu?Issoau6xIz7AKC>v6wDyQdg03rtmtU
zMr+cokDcW;QY$By4>|VKu^`hK-kpf)pC|J{znpt+tm^)rv1cl;knEA7J9Z#Ex)Oe(
z_UhTGd#3|uk%S;T*XIak$U<G41kVb%U4{W)yC)^^Y`Ih{(0_2`jx(RSSu6d3M}$gK
z+2*x->i3ro4r#jf$4EpkOxVR+$0qNU-9&;8Esg4Lb5T$&+w!yA_IZD8>`PR{z$~vL
zCNc#j%Di<Ynfjg5CeAUp^E|OJ5S?5ePfGeMK9teoEPTyiZDkTyIC^b!;l_%*fm}mU
zk{YkO0#49i&S&>x0G1kSaBY33rtnxhCO24d<{ls7&tKF{@5!G7%n^qVtvbb10+Y~y
zhxU8sh@aU$G(vvR`#A;fDfzWdl^<E>nSZiq&l_vg#`nYIz>u$R=M<Xn_+IlD+;3Bv
zJt}w%0*PMZt7Kps_Cf-*D#35&4>H}3y?x%X5uMs%+blH~ZY%)p8ckk^gw>8XEyxb(
z`<6o?W|!Z4HzUAN)#Z5d5z7~NxM(K$1-y6(X+Beu+9PQ^v1Js;)r0d>q=FAj`bBAK
zo!O5D<^a6=FVpa|FyIm^S4fCauSKrA*5%LPyo5d@wM;at)5g<mY(-Ink3U*Z{Yky1
zYnZ*hU8z3FP5PBCOMhXRt(`G$F~jUSHBaO70M6O3wNCfFcqFH5#`j`ZuNcBdzT~uy
zdO06YA>>t&3<X{xNWVD+dg$B7?;z-}j+q^kCw1TyW8<@IxPG^y9gHU8^?<c-UWry8
z`1}4no+SH}ey*YQGvhRV@Sz<K3ty4MsIu(CI1ngJQXe~V_+9OrvRt;T!mN1^aR@Hy
zN<S)Nx~@)SXnx?o0Udh{FK-ZItQx=P0JEpA-l3_Z_bt~?<_P2VLn!tBFNjxlu!Z1o
zCE*<2@K_%w6wt<yqHLO*z;uO}xV3Vuhzl5Hgotn?ES&M&pdk3JZE~%@B~XE>s$W$}
z5YsLN6+1gPzGLGF>Yj_Id9Z9?lJ~<%amhJ%n?1Ag;SON8dcZZyZbE;ofyc6z*>#DZ
z1y4`P@o%!sx(Y2sKJqfW^^202-}C9#Eg|+(pEjG(Kkxl6SuBroU4oh9Z;RT~2Q8lL
z(yqwbPObTo8UuaaU796)01{Jcl(RmtRwtd+549^Hir}0fHi8UmHB}Iu4&M-}n8cXM
z5f0?HsZ2;US`?OK32r6m>h#_^<h$_L!<*qBt)`BF3uC$CCPqvi(&Kk(!4idMgS}>0
zYjr-GePT_m63Hhwej87sVkuA9JzjEZxUOpdZQi$%0%$PS(dYX*<U^kLqjxj(UlGqz
zvV?hprbpCfmHAc|6lK%^mPu(DB})#it6;V`HojwU&G;%)UvB9V022y8sfd##k6U#1
z*i1dGjon9@SO?eP3CQf0o{5-Z6>K^bC44w9`8?4W<Pivo&_n51dF+hrbmZ+I5Fz4U
zX9B3&8@}uJmb8gcvV=glHXYBCaNNaA2iz1k580xghwE?;^@;30W6K$R5<dH$D3vt=
zw{;a2>~GpED^cx^bWX`MVltH_6`3`~c@>&3n>I)Dcowpmks?_<&j%j%?kFPem5C2n
z)q}wkE9+;i2W}7301`N8L+r;_?4|n=p3LFjn2ep8=BtE*b}tPoa6nWN0FVSyFa{Xl
zhe`qsCm7(1>IVS`0RjRj03-lkcmVh(fC4$Wu>p+4P?gVxn-DU-c@EM>soC0kr;!#m
zmLPHh+p4_FOFQ2}`Gv>&xbEMJuhD;>gX}IDBTKBj0&XUGUtmwAt7T^ZnOxKmFoHH1
z48eBWhe;UYxnUH!p{evsD-InzI0Gypd@<MqvqX4itra^{H9Vf3*lwzOtEpjT6<QpF
zVz)jGOrC@iu8>}=eDRIn-Fl#Q3>6BC#C`pgRme^u^_#FVGU|F)L2v<ge?HTX-1N=0
z34FfW^@V7I&46_b-Fr!JcZeJY3t)@Axg&Rcz36^_5%1J*ADAugH|2$?=0$GIsOf!O
zmP|z(@^J48K)gSKLY*(+;3KF|!T54`IHnexC}yRVMnWHrhJjEpG%J0?y*jF%y!^55
z30<_3HAN$FXa(=TLOOyj2runbn&!*F!G4HF#QROW*AsTOxk;L9!lB&R{dc8p%A|#S
zaQU>~jHKePX4#_ni+h2e<7w<xO&m2#aftDQAM_U)JO2m;eaQ+{Ml_dLHB$Vua8S4~
z!EQB4Z!j`p3*8Q;GzlXgW5GbOo<Wx;iEtnSRtTxu(Z%KA09E=qXv!Iqe2y;bi+4eu
zq?q0Kl{XKRLvyQ=M;3fRb@Pq!!)kb+>($QK9J@^j1+^&U78+Tzw4{yw(a9o4X&fR4
z7jN|N_q^*~&4p@%f_3N<s%unT;hu$N4udpZa9Vd0p~Jk;?pms_h@oEjJazsAm$V{4
zje>p%a(pg=3WAFBWC8IE+!u7euN+COp#8CXt;y!oEMnQpT3B!2iS#O-4~M)?`w+O}
zt<M|1=H)jIV7ULShmJNgZun-2YS3xvKQn!*FX#*T2{ubgN8$Erl8D#!2K@%TLCj>x
z^t!6ssPyqNB*Kcj7>)E$8Qrhl1eqDLJWiAbD~AZ$ZWvKA99NNJ#h&d(E#5*Yv-fb@
zfcV#jx-Rjb8>b6m-@*TjCq6&F$$r~n0hfQJXeZ*Oy+XdKfLiKa5Xfm%1vL&2RazR_
zGUIpO=9%WyThhqOJp(03s%VMki-uFnQqxqOy71{C<?cPTMr4)pABe0VU>Z*;+F5zm
z_h^2@f>oJ!M3Y&;)t2KocAkAOsbs_w>r%U5p68y7Bx;x>x+mCw#TmpNPTuh=korTT
zr7C#~ePongg2l$;`DNaX6Lb7$ec-@jz#_51M4(`<vf^3i(E`OD80$m>DZR0%_vnhw
zny?3`L<x%Z<u^B2XI`0)fqUhadWs7cTle=`A93tC5s?vDDjZq(GBC{iwdWv{Ps|Nr
zRxQ=YyllOTrGxNl;l-GXPo#K7N3{RY5T{*Gn^%1Loy`a=i!}aTmHmM0k*$I>YO<a3
z?^zR?7OXPg=zb9&F(Kdr=8{rO9BG?Etp2DX?YCnxjKCw=U4O=%zB!o8Ql>m^xhW+3
z9%XpF<Ai(zHQ0V|+DJ_X2I*XV-Oy+f5<WLOl%TEWAu3SNchx;F7@2@Gxv8f|v|b;v
zM>jOReL@O+@^biI6;X?s>JC<GljR3>4X&mqUjN=Qw~92Az=dG;m*ss`RUiKLuLr;r
zND3f@M56E%qgJF1ATnZNgO0j6N1TAd8TiI(3rhg=u!G`QU+(JQM4C?4H=hmeDqcPa
zv2=}yT1}<djGIVH`~6$}x1Vkw?PHK<NG7{qIf>HQ<6_`>I3t1Xk0^|tB5%>Y)uro(
zMBc+k(v6K`<wKiy6XI-iy&+LQ&dkyd^u7g|Bx0!}56D>*9$^Mb1mXBGF0V=AghiyP
z(kdka#}$B%gF~4Tijxz0JoNRkD<IcNZTneTljN)HTs$K`>(m_?>$=_y)UiH%idZ{K
z2>X0EVREvwrb%nna`0sOkIj-WG(1i|2^ky!0vb%tKrl;-0!0CkqVSNS;88xbAT$Id
z1P~SIBMJc!1p1(o02QEt=#Xi|S){P#L^#CRQ6`z#b4r^IZS`Z;E66a>H`NhFyuaJt
z$Qg#NYd!UhR?cq4O)wRf`4xJKiSk-1P`)yu+%7avIHaEUcJCmbf34#)Sos|aX3OH2
zE{4qIrs5Yaj5k-F@UZZfPD=TUA8rr0$l(X4x2#ltY{S9+A_gYTXDiKauIM613E;BH
z`CCD67tP{YB~K|~Yecr3`*ZFi+o%!Fc(_Ek(qNqEZnU>@^XoOZpia5EV8ykwKaPzQ
zh_jzG6v<_9J685UQiuCs00nb_mci;zWEt@*m#x-c@UtJ=X*#3LG_0XT(FvG;O2r><
zn;C&Kf(>`a6)DR~du{^#B8&UCNR+fnJLRs3|Kx=~&V9Y6ZkpnFcc@E+5zc^ovtp2`
z>Q_y5(v$B44tWlpu4oVwewthLbOC5u2&-sNvFh8s=OQYZLWi?AWz(HqFKP0BImP7u
zQa%3I*{S)~QqwSPR;NjiaTKut6=P2Y;fO!U@eNP^Z<W*ZY(rVC$?WwjO$O6fF%H0M
z-$mdZ+B)!ejLeo^5d6;GJl#L=H;@Q#HnN}#ND*U9|6>ES3~RD-UIx~9U*-a5lu&Rr
zVE_H|n?_Y85+8^>xP!=r;=*G?W<?$s*H{eZ5_7|)?76dxZ+_WYK#z9tMegA?`oT^{
z)O&3i68>urQ$J17Y(N?qZtUm3V?-I9D^HXX3Y-!W26QXLcbm)QD;Da@=O#JuBC|;+
z&nG=r1)6(<gZp{|>B5lMjxX`}Y`5u^?P;~<t#K>W^3ddY_l-5QnqA8^&40A$^D2(J
z5*=Kuq3epBEEfGPGvZ6x%i8D!fm!vH-i4sI7QtxN`k4XlsJ#T7Iko#&>`mv;peZMe
zn)D77mt|a~g{OYyF<hlfA>^^4ApGQWCqe6O<4eYkPWRV9iE*K_59Rn1(;#pUVm4my
z(G$5!QSqrlL)>omu4b@(8l1xH8n7AiTi7WLueO%e4(SI@T>!mugB4RBVN}4^7R?yt
zdo(v{*x!rkCzIE=FAV<v!Id=EyfQ!4W){`E(2v^F{~@c6y-&I&v>*49GnBi+{p|Q;
zy!Mfw+YpgT5(?GIV{LLAXGK8D?I7c1t<Hb^9^Ic09a`_Isac?Q;L=0xK~)F*rb^xE
zE<E+(Di!aa%&=dm4E(bsS!%pP(lY~&AM0uCkl)wO#fub9dPZSU9Ah~fAHfpOro#>9
zNR{0WPPy&e={!eHrY>z9DSyG355tyu1sFN)oc-p<PF%!K-;b9`q~06C*?a2;cSiyC
zF;_zL?x)Ma$*|FklOF324Mz3cDCXdy5M6Y#cJ;;PNi#U8HkU5CL(pPZ2+vIZ-l?O{
z*O!51<%_zkS#l-W&_#lgMVU#lUEcPyk8#)6*H^lKGI=`0nmPoGx;O7WBriOUb<$uU
z5o{I~&MY-|6T9BmP<730%{@4@w+`QJYVB?w{D&h-E9w>}_!yzD5WQ4<+yzcZw}ZIg
V99;dr34CDNi*YK%{QIZI{{dzOkyii!

literal 0
HcmV?d00001

diff --git a/doc/HowTo.html b/doc/HowTo.html
index 666b75e..e2463a6 100644
--- a/doc/HowTo.html
+++ b/doc/HowTo.html
@@ -246,14 +246,13 @@ div.tocify {
 
 <h1 class="title toc-ignore">How to perform a kfino outlier detection</h1>
 <h4 class="author">B. Cloez &amp; I. Sanchez</h4>
-<h4 class="date">avril 06, 2022</h4>
+<h4 class="date">avril 12, 2022</h4>
 
 </div>
 
 
 <pre class="r"><code>library(kfino)
 library(dplyr)
-#&gt; Warning: le package &#39;dplyr&#39; a été compilé avec la version R 4.1.3
 #&gt; 
 #&gt; Attachement du package : &#39;dplyr&#39;
 #&gt; Les objets suivants sont masqués depuis &#39;package:stats&#39;:
@@ -275,7 +274,7 @@ dim(spring1)
 #&gt; [1] 203   5
 
 head(spring1)
-#&gt; # A tibble: 6 x 5
+#&gt; # A tibble: 6 × 5
 #&gt; # Groups:   IDE [1]
 #&gt;   Poids Date                IDE             Day                 dateNum
 #&gt;   &lt;dbl&gt; &lt;dttm&gt;              &lt;chr&gt;           &lt;dttm&gt;                &lt;dbl&gt;
@@ -296,20 +295,17 @@ resu2&lt;-kfino_fit(datain=spring1,
               expertMin=30,expertMax=75,
               X=c(45,0.5,41),
               doOptim=FALSE,aa=0.001,sigma2_mm=0.05,K=2,sigma2_pp=5)
-#&gt; [1] &quot;-------:&quot;
-#&gt; [1] &quot;No optimisation of initial parameters:&quot;
-#&gt; [1] &quot;Used parameters: &quot;
-#&gt; [1] 45.0  0.5 41.0
+#&gt; Error in kfino_fit(datain = spring1, Tvar = &quot;dateNum&quot;, Yvar = &quot;Poids&quot;, : arguments inutilisés (expertMin = 30, expertMax = 75, X = c(45, 0.5, 41), aa = 0.001, sigma2_mm = 0.05, K = 2, sigma2_pp = 5)
               
 # flags are qualitative
 kfino_plot(resuin=resu2,typeG=&quot;quali&quot;,
-            Tvar=&quot;Day&quot;,Yvar=&quot;Poids&quot;,Ident=&quot;IDE&quot;)</code></pre>
-<p><img src="" width="672" /></p>
-<pre class="r"><code>            
+            Tvar=&quot;Day&quot;,Yvar=&quot;Poids&quot;,Ident=&quot;IDE&quot;)
+#&gt; Error in kfino_plot(resuin = resu2, typeG = &quot;quali&quot;, Tvar = &quot;Day&quot;, Yvar = &quot;Poids&quot;, : objet &#39;resu2&#39; introuvable
+            
 # flags are quantitative
 kfino_plot(resuin=resu2,typeG=&quot;quanti&quot;,
-            Tvar=&quot;Day&quot;,Yvar=&quot;Poids&quot;,Ident=&quot;IDE&quot;)</code></pre>
-<p><img src="" width="672" /></p>
+            Tvar=&quot;Day&quot;,Yvar=&quot;Poids&quot;,Ident=&quot;IDE&quot;)
+#&gt; Error in kfino_plot(resuin = resu2, typeG = &quot;quanti&quot;, Tvar = &quot;Day&quot;, Yvar = &quot;Poids&quot;, : objet &#39;resu2&#39; introuvable</code></pre>
 </div>
 <div id="initial-parameters-optimized" class="section level2" number="2.2">
 <h2><span class="header-section-number">2.2</span> Initial parameters optimized</h2>
@@ -318,30 +314,22 @@ resu1&lt;-kfino_fit(datain=spring1,
               Tvar=&quot;dateNum&quot;,Yvar=&quot;Poids&quot;,
               expertMin=30,expertMax=75,
               doOptim=TRUE,aa=0.001,sigma2_mm=0.05,K=2,sigma2_pp=5)
-#&gt; [1] &quot;-------:&quot;
-#&gt; [1] &quot;Optimisation of initial parameters - result:&quot;
-#&gt; [1] &quot;no sub-sampling performed:&quot;
-#&gt; bornem0:  40.1 43 
-#&gt; m0opt:  41.3 
-#&gt; mmopt:  46.3 
-#&gt; [1] &quot;Optimised parameters: &quot;
-#&gt; [1] 61.1  0.7 42.1
-#&gt; [1] &quot;-------:&quot;
+#&gt; Error in kfino_fit(datain = spring1, Tvar = &quot;dateNum&quot;, Yvar = &quot;Poids&quot;, : arguments inutilisés (expertMin = 30, expertMax = 75, aa = 0.001, sigma2_mm = 0.05, K = 2, sigma2_pp = 5)
               
 # flags are qualitative
 kfino_plot(resuin=resu1,typeG=&quot;quali&quot;,
-            Tvar=&quot;Day&quot;,Yvar=&quot;Poids&quot;,Ident=&quot;IDE&quot;)</code></pre>
-<p><img src="" width="672" /></p>
-<pre class="r"><code>            
+            Tvar=&quot;Day&quot;,Yvar=&quot;Poids&quot;,Ident=&quot;IDE&quot;)
+#&gt; Error in kfino_plot(resuin = resu1, typeG = &quot;quali&quot;, Tvar = &quot;Day&quot;, Yvar = &quot;Poids&quot;, : objet &#39;resu1&#39; introuvable
+            
 # flags are quantitative
 kfino_plot(resuin=resu1,typeG=&quot;quanti&quot;,
-            Tvar=&quot;Day&quot;,Yvar=&quot;Poids&quot;,Ident=&quot;IDE&quot;)</code></pre>
-<p><img src="" width="672" /></p>
+            Tvar=&quot;Day&quot;,Yvar=&quot;Poids&quot;,Ident=&quot;IDE&quot;)
+#&gt; Error in kfino_plot(resuin = resu1, typeG = &quot;quanti&quot;, Tvar = &quot;Day&quot;, Yvar = &quot;Poids&quot;, : objet &#39;resu1&#39; introuvable</code></pre>
 <div id="prediction-of-the-weight-on-the-cleaned-dataset" class="section level3" number="2.2.1">
 <h3><span class="header-section-number">2.2.1</span> Prediction of the weight on the cleaned dataset</h3>
 <pre class="r"><code>kfino_plot(resuin=resu1,typeG=&quot;prediction&quot;,
-            Tvar=&quot;Day&quot;,Yvar=&quot;Poids&quot;,Ident=&quot;IDE&quot;)</code></pre>
-<p><img src="" width="672" /></p>
+            Tvar=&quot;Day&quot;,Yvar=&quot;Poids&quot;,Ident=&quot;IDE&quot;)
+#&gt; Error in kfino_plot(resuin = resu1, typeG = &quot;prediction&quot;, Tvar = &quot;Day&quot;, : objet &#39;resu1&#39; introuvable</code></pre>
 </div>
 </div>
 </div>
@@ -355,7 +343,7 @@ dim(merinos1)
 #&gt; [1] 397   5
 
 head(merinos1)
-#&gt; # A tibble: 6 x 5
+#&gt; # A tibble: 6 × 5
 #&gt; # Groups:   IDE [1]
 #&gt;   Poids Date                IDE             Day                 dateNum
 #&gt;   &lt;dbl&gt; &lt;dttm&gt;              &lt;chr&gt;           &lt;dttm&gt;                &lt;dbl&gt;
@@ -375,45 +363,42 @@ resu3&lt;-kfino_fit(datain=merinos1,
               Tvar=&quot;dateNum&quot;,Yvar=&quot;Poids&quot;,
               expertMin=10,expertMax=45,
               doOptim=TRUE,aa=0.001,sigma2_mm=0.05,K=2,sigma2_pp=5)
-#&gt; [1] &quot;-------:&quot;
-#&gt; [1] &quot;Optimisation of initial parameters - result:&quot;
-#&gt; [1] &quot;no sub-sampling performed:&quot;
-#&gt; bornem0:  26.4 40.4 
-#&gt; m0opt:  28.2 
-#&gt; mmopt:  33.6 
-#&gt; [1] &quot;Optimised parameters: &quot;
-#&gt; [1] 45.4  0.7 26.4
-#&gt; [1] &quot;-------:&quot;
+#&gt; Error in kfino_fit(datain = merinos1, Tvar = &quot;dateNum&quot;, Yvar = &quot;Poids&quot;, : arguments inutilisés (expertMin = 10, expertMax = 45, aa = 0.001, sigma2_mm = 0.05, K = 2, sigma2_pp = 5)
               
 # flags are qualitative
 kfino_plot(resuin=resu3,typeG=&quot;quali&quot;,
-            Tvar=&quot;Day&quot;,Yvar=&quot;Poids&quot;,Ident=&quot;IDE&quot;)</code></pre>
-<p><img src="" width="672" /></p>
-<pre class="r"><code>            
+            Tvar=&quot;Day&quot;,Yvar=&quot;Poids&quot;,Ident=&quot;IDE&quot;)
+#&gt; Error in kfino_plot(resuin = resu3, typeG = &quot;quali&quot;, Tvar = &quot;Day&quot;, Yvar = &quot;Poids&quot;, : objet &#39;resu3&#39; introuvable
+            
 # flags are quantitative
 kfino_plot(resuin=resu3,typeG=&quot;quanti&quot;,
-            Tvar=&quot;Day&quot;,Yvar=&quot;Poids&quot;,Ident=&quot;IDE&quot;)</code></pre>
-<p><img src="" width="672" /></p>
+            Tvar=&quot;Day&quot;,Yvar=&quot;Poids&quot;,Ident=&quot;IDE&quot;)
+#&gt; Error in kfino_plot(resuin = resu3, typeG = &quot;quanti&quot;, Tvar = &quot;Day&quot;, Yvar = &quot;Poids&quot;, : objet &#39;resu3&#39; introuvable</code></pre>
 <div id="prediction-of-the-weight-on-the-cleaned-dataset-1" class="section level3" number="4.1.1">
 <h3><span class="header-section-number">4.1.1</span> Prediction of the weight on the cleaned dataset</h3>
 <pre class="r"><code>kfino_plot(resuin=resu3,typeG=&quot;prediction&quot;,
-            Tvar=&quot;Day&quot;,Yvar=&quot;Poids&quot;,Ident=&quot;IDE&quot;)</code></pre>
-<p><img src="" width="672" /></p>
+            Tvar=&quot;Day&quot;,Yvar=&quot;Poids&quot;,Ident=&quot;IDE&quot;)
+#&gt; Error in kfino_plot(resuin = resu3, typeG = &quot;prediction&quot;, Tvar = &quot;Day&quot;, : objet &#39;resu3&#39; introuvable</code></pre>
 </div>
 </div>
 </div>
 <div id="session-informations" class="section level1" number="5">
 <h1><span class="header-section-number">5</span> Session informations</h1>
-<pre><code>#&gt; R version 4.1.2 (2021-11-01)
-#&gt; Platform: x86_64-w64-mingw32/x64 (64-bit)
-#&gt; Running under: Windows 10 x64 (build 19044)
+<pre><code>#&gt; R version 4.1.3 (2022-03-10)
+#&gt; Platform: x86_64-pc-linux-gnu (64-bit)
+#&gt; Running under: Ubuntu 18.04.6 LTS
 #&gt; 
 #&gt; Matrix products: default
+#&gt; BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
+#&gt; LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1
 #&gt; 
 #&gt; locale:
-#&gt; [1] LC_COLLATE=French_France.1252  LC_CTYPE=French_France.1252   
-#&gt; [3] LC_MONETARY=French_France.1252 LC_NUMERIC=C                  
-#&gt; [5] LC_TIME=French_France.1252    
+#&gt;  [1] LC_CTYPE=fr_FR.UTF-8       LC_NUMERIC=C              
+#&gt;  [3] LC_TIME=fr_FR.UTF-8        LC_COLLATE=fr_FR.UTF-8    
+#&gt;  [5] LC_MONETARY=fr_FR.UTF-8    LC_MESSAGES=fr_FR.UTF-8   
+#&gt;  [7] LC_PAPER=fr_FR.UTF-8       LC_NAME=C                 
+#&gt;  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
+#&gt; [11] LC_MEASUREMENT=fr_FR.UTF-8 LC_IDENTIFICATION=C       
 #&gt; 
 #&gt; attached base packages:
 #&gt; [1] stats     graphics  grDevices utils     datasets  methods   base     
@@ -422,22 +407,21 @@ kfino_plot(resuin=resu3,typeG=&quot;quanti&quot;,
 #&gt; [1] ggplot2_3.3.5 dplyr_1.0.8   kfino_1.0.0  
 #&gt; 
 #&gt; loaded via a namespace (and not attached):
-#&gt;  [1] tidyselect_1.1.2  xfun_0.30         bslib_0.3.1       remotes_2.4.2    
-#&gt;  [5] purrr_0.3.4       colorspace_2.0-3  vctrs_0.3.8       generics_0.1.2   
-#&gt;  [9] testthat_3.1.3    usethis_2.1.5     htmltools_0.5.2   yaml_2.3.5       
-#&gt; [13] utf8_1.2.2        rlang_1.0.2       pkgbuild_1.3.1    pillar_1.7.0     
+#&gt;  [1] tidyselect_1.1.2  xfun_0.30         bslib_0.3.1       remotes_2.4.1    
+#&gt;  [5] purrr_0.3.4       colorspace_2.0-3  vctrs_0.4.0       generics_0.1.2   
+#&gt;  [9] testthat_3.1.3    usethis_2.1.3     htmltools_0.5.2   yaml_2.3.5       
+#&gt; [13] utf8_1.2.2        rlang_1.0.2       pkgbuild_1.2.0    pillar_1.7.0     
 #&gt; [17] jquerylib_0.1.4   glue_1.6.2        withr_2.5.0       DBI_1.1.2        
-#&gt; [21] sessioninfo_1.2.2 lifecycle_1.0.1   stringr_1.4.0     munsell_0.5.0    
-#&gt; [25] gtable_0.3.0      devtools_2.4.3    evaluate_0.15     memoise_2.0.1    
-#&gt; [29] labeling_0.4.2    knitr_1.38        callr_3.7.0       fastmap_1.1.0    
-#&gt; [33] ps_1.6.0          fansi_1.0.3       highr_0.9         scales_1.1.1     
-#&gt; [37] cachem_1.0.6      desc_1.4.1        pkgload_1.2.4     jsonlite_1.8.0   
-#&gt; [41] farver_2.1.0      fs_1.5.2          brio_1.1.3        digest_0.6.29    
-#&gt; [45] stringi_1.7.6     processx_3.5.3    rprojroot_2.0.3   grid_4.1.2       
-#&gt; [49] cli_3.2.0         tools_4.1.2       magrittr_2.0.2    sass_0.4.1       
-#&gt; [53] tibble_3.1.6      crayon_1.5.1      pkgconfig_2.0.3   ellipsis_0.3.2   
-#&gt; [57] prettyunits_1.1.1 assertthat_0.2.1  rmarkdown_2.13    rstudioapi_0.13  
-#&gt; [61] R6_2.5.1          compiler_4.1.2</code></pre>
+#&gt; [21] sessioninfo_1.2.1 lifecycle_1.0.1   stringr_1.4.0     munsell_0.5.0    
+#&gt; [25] gtable_0.3.0      devtools_2.4.2    evaluate_0.15     memoise_2.0.0    
+#&gt; [29] knitr_1.38        callr_3.7.0       fastmap_1.1.0     ps_1.6.0         
+#&gt; [33] fansi_1.0.3       scales_1.1.1      cachem_1.0.6      desc_1.4.1       
+#&gt; [37] pkgload_1.2.4     jsonlite_1.8.0    fs_1.5.2          brio_1.1.3       
+#&gt; [41] digest_0.6.29     stringi_1.7.6     processx_3.5.3    rprojroot_2.0.3  
+#&gt; [45] grid_4.1.3        cli_3.2.0         tools_4.1.3       magrittr_2.0.3   
+#&gt; [49] sass_0.4.1        tibble_3.1.6      crayon_1.5.1      pkgconfig_2.0.3  
+#&gt; [53] ellipsis_0.3.2    prettyunits_1.1.1 assertthat_0.2.1  rmarkdown_2.13   
+#&gt; [57] rstudioapi_0.13   R6_2.5.1          compiler_4.1.3</code></pre>
 </div>
 
 
diff --git a/man/kfino.Rd b/man/kfino.Rd
index 3baabd3..9583a72 100644
--- a/man/kfino.Rd
+++ b/man/kfino.Rd
@@ -6,6 +6,8 @@
 \alias{kfino-package}
 \title{kfino: Kalman Filtering}
 \description{
+\if{html}{\figure{logo.png}{options: align='right' alt='logo' width='120'}}
+
 A method for detecting outliers with a Kalman filter on impulsed noised outliers and prediction on cleaned data.
 }
 \details{
diff --git a/man/lambs.Rd b/man/lambs.Rd
new file mode 100644
index 0000000..020dc97
--- /dev/null
+++ b/man/lambs.Rd
@@ -0,0 +1,23 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/data.R
+\docType{data}
+\name{lambs}
+\alias{lambs}
+\title{a dataset containing the WoW weighing for 4 animals of 1296 observations}
+\format{
+a data.frame
+\describe{
+  \item{Poids}{weight (in kg)}
+  \item{Date}{Date of weighing yyyy-mm-dd}
+  \item{IDE}{id of the animal}
+  \item{Day}{Date of weighing with day and time yyyy-mm-dd hh:mm:ss}
+  \item{dateNum}{Day expressed in numeric (portion of a day)}
+}
+}
+\usage{
+lambs
+}
+\description{
+A dataset for kfino algorithm
+}
+\keyword{datasets}
diff --git a/man/merinos2.Rd b/man/merinos2.Rd
index 64e24cd..72d687f 100644
--- a/man/merinos2.Rd
+++ b/man/merinos2.Rd
@@ -3,7 +3,7 @@
 \docType{data}
 \name{merinos2}
 \alias{merinos2}
-\title{a dataset containing the WoW weighing for one animal (merinos lamb) of 345 
+\title{a dataset containing the WoW weighing for one animal (merinos lamb) of 345
 observations, difficult to model}
 \format{
 a data.frame
diff --git a/vignettes/multipleFit.Rmd b/vignettes/multipleFit.Rmd
new file mode 100644
index 0000000..3fb85d1
--- /dev/null
+++ b/vignettes/multipleFit.Rmd
@@ -0,0 +1,127 @@
+---
+title: "How to perform a kfino outlier detection on multiple individuals"
+author: "B. Cloez & I. Sanchez"
+date:  "`r format(Sys.time(), '%B %d, %Y')`"
+output:
+  html_document:
+    toc: yes
+    toc_float: true
+    number_sections: true
+vignette: >
+  %\VignetteIndexEntry{How to perform a kfino outlier detection on multiple individuals}
+  %\VignetteEngine{knitr::rmarkdown}
+  %\VignetteEncoding{UTF-8}
+---
+
+```{r, include = FALSE}
+knitr::opts_chunk$set(
+  collapse = TRUE,
+  comment = "#>"
+)
+```
+
+```{r setup}
+library(kfino)
+library(dplyr)
+library(foreach)
+library(parallel)
+```
+
+```{r}
+data(lambs)
+myIDE<-unique(lambs$IDE)
+
+print(myIDE)
+```
+
+# Without parallelization
+
+```{r,error=TRUE}
+param=list(m0=NULL,
+             mm=NULL,
+             pp=NULL,
+             aa=0.001,
+             expertMin=10,
+             expertMax=45,
+             sigma2_m0=1,
+             sigma2_mm=0.05,
+             sigma2_pp=5,
+             K=15,
+             seqp=seq(0.4,0.7,0.1))
+
+t0 <- Sys.time()
+resu1<-list()
+
+for (i in seq_along(myIDE)){
+  print(myIDE[i])
+  tp.test<-filter(lambs,IDE == myIDE[i])
+  print(dim(tp.test))
+  resu1[[i]]<-kfino_fit(datain=tp.test,
+              Tvar="dateNum",Yvar="Poids",
+              param=param,
+              doOptim=TRUE)
+}
+Sys.time() - t0
+
+print(length(resu1))
+
+```
+
+# Parallel execution
+
+An example to improve a run on a complete dataset by parallelizing the call.
+
+```{r,error=TRUE}
+
+param=list(m0=NULL,
+             mm=NULL,
+             pp=NULL,
+             aa=0.001,
+             expertMin=10,
+             expertMax=45,
+             sigma2_m0=1,
+             sigma2_mm=0.05,
+             sigma2_pp=5,
+             K=15,
+             seqp=seq(0.4,0.7,0.1))
+
+t0<-Sys.time()
+
+simpleCall<-function(datain,Index,Tvar,Yvar,param){
+  datain<-as.data.frame(datain)
+  ici<-unique(datain[,"IDE"])
+  tp.data<-datain[ datain[,"IDE"] == ici[Index],]
+
+  tp.resu<-kfino::kfino_fit(datain=tp.data,
+              Tvar=Tvar,Yvar=Yvar,
+              param=param,
+              doOptim=TRUE)
+  return(tp.resu)
+}
+
+ncores<-parallel::detectCores()
+myCluster<-parallel::makeCluster(ncores - 1)
+doParallel::registerDoParallel(myCluster)
+
+resu2<-foreach(i=seq_along(myIDE), .packages="kfino") %dopar% 
+            simpleCall(datain=lambs,
+                       Index=i,
+                       Tvar="dateNum",
+                       Yvar="Poids",
+                       param=param)
+
+parallel::stopCluster(myCluster)
+Sys.time() - t0
+
+print(length(resu2))
+
+```
+
+```{r}
+identical(resu1,resu2)
+```
+
+# session info
+```{r}
+sessionInfo()
+```
-- 
GitLab