diff --git a/NAMESPACE b/NAMESPACE index 1a3e3ed54360390a81eda0dde944787f01011902..54c0e1f1b2ff02ae5f1622d53479c3a292c62f5a 100644 --- a/NAMESPACE +++ b/NAMESPACE @@ -3,9 +3,9 @@ export(KBO_EM) export(KBO_L) export(KBO_known) +export(doutlier) export(kfino_fit) export(kfino_plot) -export(loi_outlier) importFrom(dplyr,"%>%") importFrom(dplyr,.data) importFrom(dplyr,arrange) diff --git a/R/utils_functions.R b/R/utils_functions.R index 0adf66ef4d48aaa19d57b0417ae72969d9b468ed..ef18f9cf312e67575796599618504778f112d71a 100644 --- a/R/utils_functions.R +++ b/R/utils_functions.R @@ -1,12 +1,12 @@ #------------------------------------------------------------------- # utils_functions.R: some useful functions for kfino method -# loi_outlier() +# doutlier() # KBO_known() # KBO_L() # KBO_EM() #------------------------------------------------------------------- -#' loi_outlier This function defines an outlier distribution (Surface of a +#' doutlier This function defines an outlier distribution (Surface of a #' trapezium) and uses input parameters given in the main function kfino_fit() #' #' @param y numeric, point @@ -20,8 +20,8 @@ #' @export #' #' @examples -#' loi_outlier(2,5,10,45) -loi_outlier<-function(y, +#' doutlier(2,5,10,45) +doutlier<-function(y, K, expertMin, expertMax){ @@ -93,7 +93,7 @@ KBO_known<-function(param,threshold,kappa=10,Y,Tps,N){ m1= (sigma2_pp*m0 + Y[1]*sigma2_m0)/(sigma2_m0+sigma2_pp) sigma1=(sigma2_m0*sigma2_pp)/(sigma2_m0+sigma2_pp) - l0<- loi_outlier(Y[1],K,expertMin,expertMax) + l0<- doutlier(Y[1],K,expertMin,expertMax) loinorm1<-dnorm(Y[1],m0, sqrt(sigma2_m0+sigma2_pp)) p0= ((1-pp)*l0) / (pp*loinorm1 + (1-pp)*l0) @@ -124,7 +124,7 @@ KBO_known<-function(param,threshold,kappa=10,Y,Tps,N){ qnew=rep(0 ,2^(k+1)) diffTps<-Tps[k+1] - Tps[k] #--- numérateur de pu0 - tpbeta<-loi_outlier(Y[k+1],K,expertMin,expertMax) + tpbeta<-doutlier(Y[k+1],K,expertMin,expertMax) pnew[1:(2^k)]=p[1:(2^k)]*(1-pp)*tpbeta Lnew[1:(2^k)]=L[1:(2^k)]*tpbeta @@ -170,7 +170,7 @@ KBO_known<-function(param,threshold,kappa=10,Y,Tps,N){ diffTps<-Tps[k+1] - Tps[k] #--- pu0 numerator - tpbeta<-loi_outlier(Y[k+1],K,expertMin,expertMax) + tpbeta<-doutlier(Y[k+1],K,expertMin,expertMax) pnew[1:(2^kappa)]=p[1:(2^kappa)]*(1-pp)*tpbeta Lnew[1:(2^kappa)]=L[1:(2^kappa)]*tpbeta @@ -284,7 +284,7 @@ KBO_L<-function(param,kappaOpt=7,Y,Tps,N,dix){ m1= (sigma2_pp*m0 + Y[1]*sigma2_m0)/(sigma2_m0+sigma2_pp) sigma1=(sigma2_m0*sigma2_pp)/(sigma2_m0+sigma2_pp) - l0<- loi_outlier(Y[1],K,expertMin,expertMax) + l0<- doutlier(Y[1],K,expertMin,expertMax) loinorm1<-dnorm(Y[1],m0, sqrt(sigma2_m0+sigma2_pp)) p0= ((1-pp)*l0) / (pp*loinorm1 + (1-pp)*l0) @@ -308,7 +308,7 @@ KBO_L<-function(param,kappaOpt=7,Y,Tps,N,dix){ qnew=rep(0 ,2^(k+1)) diffTps<-Tps[k+1] - Tps[k] #--- numerator of pu0 - tpbeta<-loi_outlier(Y[k+1],K,expertMin,expertMax) + tpbeta<-doutlier(Y[k+1],K,expertMin,expertMax) pnew[1:(2^k)]=p[1:(2^k)]*(1-pp)*tpbeta Lnew[1:(2^k)]=L[1:(2^k)]*tpbeta mnew[1:(2^k)]= m[1:(2^k)]*exp(-aa*diffTps) + mm*(1-exp(-aa*diffTps)) #m_u0 @@ -343,7 +343,7 @@ KBO_L<-function(param,kappaOpt=7,Y,Tps,N,dix){ qnew=rep(0 ,2^(kappa+1)) diffTps<-Tps[k+1] - Tps[k] #--- numerator of pu0 - tpbeta<-loi_outlier(Y[k+1],K,expertMin,expertMax) + tpbeta<-doutlier(Y[k+1],K,expertMin,expertMax) pnew[1:(2^kappa)]=p[1:(2^kappa)]*(1-pp)*tpbeta Lnew[1:(2^kappa)]=L[1:(2^kappa)]*tpbeta mnew[1:(2^kappa)]= m[1:(2^kappa)]*exp(-aa*diffTps) + mm*(1-exp(-aa*diffTps)) #m_u0 @@ -438,7 +438,7 @@ KBO_EM<-function(param,kappaOpt,Y,Tps,N,dix){ m1= (sigma2_pp*m0 + Y[1]*sigma2_m0)/(sigma2_m0+sigma2_pp) sigma1=(sigma2_m0*sigma2_pp)/(sigma2_m0+sigma2_pp) - l0<- loi_outlier(Y[1],K,expertMin,expertMax) + l0<- doutlier(Y[1],K,expertMin,expertMax) loinorm1<-dnorm(Y[1],m0, sqrt(sigma2_m0+sigma2_pp)) p0= ((1-pp)*l0) / (pp*loinorm1 + (1-pp)*l0) @@ -477,7 +477,7 @@ KBO_EM<-function(param,kappaOpt,Y,Tps,N,dix){ qnew=rep(0 ,2^(k+1)) diffTps<-Tps[k+1] - Tps[k] #--- numérateur de pu0 - tpbeta<-loi_outlier(Y[k+1],K,expertMin,expertMax) + tpbeta<-doutlier(Y[k+1],K,expertMin,expertMax) pnew[1:(2^k)]=p[1:(2^k)]*(1-pp)*tpbeta Lnew[1:(2^k)]=L[1:(2^k)]*tpbeta mnew[1:(2^k)]= m[1:(2^k)]*exp(-aa*diffTps) + mm*(1-exp(-aa*diffTps)) #m_u0 @@ -540,7 +540,7 @@ KBO_EM<-function(param,kappaOpt,Y,Tps,N,dix){ qnew=rep(0 ,2^(kappa+1)) diffTps<-Tps[k+1] - Tps[k] #--- pu0 numerator - tpbeta<-loi_outlier(Y[k+1],K,expertMin,expertMax) + tpbeta<-doutlier(Y[k+1],K,expertMin,expertMax) pnew[1:(2^kappa)]=p[1:(2^kappa)]*(1-pp)*tpbeta Lnew[1:(2^kappa)]=L[1:(2^kappa)]*tpbeta # m_uO diff --git a/man/loi_outlier.Rd b/man/doutlier.Rd similarity index 71% rename from man/loi_outlier.Rd rename to man/doutlier.Rd index 15b1de6d9bca1c468a192fd2027ea7b749d659a9..efd7eaa4a3348bd58deace1e7ef4401e3586dfcd 100644 --- a/man/loi_outlier.Rd +++ b/man/doutlier.Rd @@ -1,11 +1,11 @@ % Generated by roxygen2: do not edit by hand % Please edit documentation in R/utils_functions.R -\name{loi_outlier} -\alias{loi_outlier} -\title{loi_outlier This function defines an outlier distribution (Surface of a +\name{doutlier} +\alias{doutlier} +\title{doutlier This function defines an outlier distribution (Surface of a trapezium) and uses input parameters given in the main function kfino_fit()} \usage{ -loi_outlier(y, K, expertMin, expertMax) +doutlier(y, K, expertMin, expertMax) } \arguments{ \item{y}{numeric, point} @@ -20,7 +20,7 @@ loi_outlier(y, K, expertMin, expertMax) a numeric value } \description{ -loi_outlier This function defines an outlier distribution (Surface of a +doutlier This function defines an outlier distribution (Surface of a trapezium) and uses input parameters given in the main function kfino_fit() } \details{ @@ -28,5 +28,5 @@ this function is used to calculate an outlier distribution following a trapezium shape } \examples{ -loi_outlier(2,5,10,45) +doutlier(2,5,10,45) }