diff --git a/R/rmtd.R b/R/rmtd.R index 3b8c7d631ef9f14d2faa90a8cb1dbd62fceff6eb..437d0482071bae61b53058523bf95c8c336f7c68 100644 --- a/R/rmtd.R +++ b/R/rmtd.R @@ -19,7 +19,7 @@ rmtd <- function(n, nu, mu, Sigma, tol = 1e-6) { #' can be generated using: #' \deqn{\displaystyle{X = \mu + \frac{Y}{\sqrt{\frac{u}{\nu}}}}} #' where \eqn{Y} is a random vector distributed among a centered Gaussian density - #' with covariance matrix \eqn{\Sigma} (generated using \code{\link{mvrnorm}}) + #' with covariance matrix \eqn{\Sigma} (generated using \code{\link[MASS]{mvrnorm}}) #' and \eqn{u} is distributed among a Chi-squared distribution with \eqn{\nu} degrees of freedom. #' #' @author Pierre Santagostini, Nizar Bouhlel diff --git a/man/rmtd.Rd b/man/rmtd.Rd index fb5a080b8c4b3b177bf43ed0c8759134757a3061..e1155e8e828f38851a80cb56b7b4151e200fe5c8 100644 --- a/man/rmtd.Rd +++ b/man/rmtd.Rd @@ -30,7 +30,7 @@ A sample from a MTD with parameters \eqn{\nu}, \eqn{\boldsymbol{\mu}} and \eqn{\ can be generated using: \deqn{\displaystyle{X = \mu + \frac{Y}{\sqrt{\frac{u}{\nu}}}}} where \eqn{Y} is a random vector distributed among a centered Gaussian density -with covariance matrix \eqn{\Sigma} (generated using \code{\link{mvrnorm}}) +with covariance matrix \eqn{\Sigma} (generated using \code{\link[MASS]{mvrnorm}}) and \eqn{u} is distributed among a Chi-squared distribution with \eqn{\nu} degrees of freedom. } \examples{