pedigree.h 54.2 KB
Newer Older
1
2
3
4
#ifndef _SPELL_BAYES_CSV_H_
#define _SPELL_BAYES_CSV_H_

#include <iostream>
5
#include "file.h"
6
7
8
9
10
#include <string>
#include <sstream>
#include <stdexcept>
#include <vector>
#include <utility>
11
#include <unordered_set>
12
13


Damien Leroux's avatar
Damien Leroux committed
14
15
/*#include "permutation.h"*/
/*#include "symmetry.h"*/
16
17
#include "geno_matrix.h"
#include "linear_combination.h"
Damien Leroux's avatar
Damien Leroux committed
18
#include "pedigree_tree.h"
19
#include "bayes/output.h"
20
21


22
23
24
25
26
27
28
29
30
31
32
struct bn_label_type {
    char first;
    char second;
    char first_allele;
    char second_allele;
    bn_label_type() : first(0), second(0), first_allele(0), second_allele(0) {}
    bn_label_type(int) : first(0), second(0), first_allele(0), second_allele(0) {}
    bn_label_type(char f, char s, char fa, char sa)
        : first(f), second(s), first_allele(fa), second_allele(sa)
    {}

33
34
35
    int compact() const { return *(int*) this; }
    int& compact() { return *(int*) this; }

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
    friend std::ostream& operator << (std::ostream& os, const bn_label_type& bl)
    {
        if (bl.second != GAMETE_EMPTY) {
            return os << bl.first << ((int) bl.first_allele) << bl.second << ((int) bl.second_allele);
        } else {
            return os << bl.first << ((int) bl.first_allele);
        }
    }

    bool operator < (const bn_label_type& other) const
    {
        /*return first < other.first || (first == other.first*/
            /*&& (second < other.second || (second == other.second*/
            /*&& (first_allele < other.first_allele || (first_allele == other.first_allele*/
            /*&& second_allele < other.second_allele)))));*/
        return (*(int*)this) < (*(int*) &other);
    }

    bool operator == (const bn_label_type& other) const
    {
        return (*(int*)this) == (*(int*) &other);
    }
58
59
60
61
62

    bool operator != (const bn_label_type& other) const
    {
        return (*(int*)this) != (*(int*) &other);
    }
63
64
65
};

typedef combination_type<size_t, bn_label_type> genotype_comb_type;
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135


template <typename Arg>
int read_field(std::stringstream& s, char sep, Arg& arg)
{
    std::string field;
    std::getline(s, field, sep);
    /*MSG_DEBUG("CSV FIELD |" << field << "|");*/
    std::stringstream ss(field);
    ss >> arg;
    return 0;
}


#define do_with_arg_pack(_expr) do { using _ = int[]; (void)_{0, ((_expr), void(), 0)...}; } while(0)

template <typename... Args>
void read_csv_line(std::istream& is, char sep, Args&... args)
{
    std::string line;
    std::getline(is, line);
    /*MSG_DEBUG("CSV LINE |" << line << "|");*/
    std::stringstream ss(line);
    do_with_arg_pack(read_field(ss, sep, args));
}





struct pedigree_item {
    std::string gen_name;
    int id;
    int p1;
    int p2;

    pedigree_item(const char* gn, int i, int a, int b)
        : gen_name(gn), id(i), p1(a), p2(b)
    {}

    pedigree_item(std::istream& is, char field_sep=';')
        : gen_name()
    {
        id = p1 = p2 = 0;
        read_csv_line(is, field_sep, gen_name, id, p1, p2);
        if (id == p1 && id == p2 && id == 0) {
            return;
        }
        if (id <= p1 || id <= p2) {
            throw std::runtime_error("Bad ID! ID must be greater than p1 AND p2");
            /*MSG_DEBUG("BAD ID!! " << id << " must be greater than " << p1 << " AND " << p2);*/
        }
    }

    bool is_ancestor() const { return p1 == 0 && p2 == 0; }
    bool is_self() const { return p1 > 0 && p1 == p2; }
    bool is_cross() const { return p1 > 0 && p2 > 0 && p1 != p2; }
    bool is_dh() const { return p1 != p2 && p1 >= 0 && p2 >= 0 && (p1 * p2) == 0; }
    bool is_bullshit() const { return !(is_ancestor() || is_self() || is_cross() || is_dh()); }
};


std::vector<pedigree_item>
read_csv(const std::string& pedigree_file, char field_sep=';');



typedef std::map<size_t, size_t> ancestor_list_type;


136
inline
137
138
139
140
141
142
143
144
145
146
147
148
ancestor_list_type reentrants(const ancestor_list_type& a)
{
    ancestor_list_type ret;
    for (const auto& kv: a) {
        if (kv.second > 1) {
            ret.emplace(kv);
        }
    }
    return ret;
}


149
inline
150
151
152
153
154
155
156
157
158
159
ancestor_list_type operator + (const ancestor_list_type& a1, const ancestor_list_type& a2)
{
    ancestor_list_type ret(a1);
    for (const auto& kv: a2) {
        ret[kv.first] += kv.second;
    }
    return ret;
}


160
inline
161
162
163
164
165
166
167
168
169
170
171
172
173
ancestor_list_type operator / (const ancestor_list_type& a, const ancestor_list_type& restr)
{
    ancestor_list_type ret;
    for (const auto& kv: a) {
        auto i = restr.find(kv.first);
        if (i != restr.end()) {
            ret.emplace(kv.first, std::min(kv.second, i->second));
        }
    }
    return ret;
}


174
inline
175
176
177
178
179
180
181
182
183
184
185
186
ancestor_list_type operator % (const ancestor_list_type& a, const ancestor_list_type& restr)
{
    ancestor_list_type ret;
    for (const auto& kv: a) {
        if (restr.find(kv.first) != restr.end()) {
            ret.emplace(kv);
        }
    }
    return ret;
}


187
inline
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
ancestor_list_type operator - (const ancestor_list_type& a, const ancestor_list_type& restr)
{
    ancestor_list_type ret;
    for (const auto& kv: a) {
        auto it = restr.find(kv.first);
        if (it == restr.end()) {
            ret.emplace(kv);
        } else if (kv.second > it->second) {
            ret.emplace(kv.first, kv.second - it->second);
        }
    }
    return ret;
}


203
inline
204
205
206
207
208
209
210
211
212
213
ancestor_list_type operator * (const ancestor_list_type& a, size_t weight)
{
    ancestor_list_type ret;
    for (const auto& kv: a) {
        ret.emplace(kv.first, kv.second * weight);
    }
    return ret;
}


214
inline
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
std::ostream& operator << (std::ostream& os, const ancestor_list_type& a)
{
    auto i = a.begin();
    auto j = a.end();
    if (i != j) {
        os << i->first << ':' << i->second;
        for (++i; i != j; ++i) {
            os << ' ' << i->first << ':' << i->second;
        }
    } else {
        os << "empty";
    }
    return os;
}


231
#if 0
232
233
234
235
236
237
238
239
240
241
242
243
label_type operator * (label_type a, label_type b)
{
    label_type ret;
    if (a.second == GAMETE_EMPTY) {
        ret = {a.first, b.first};
    } else {
        if (b.second == GAMETE_EMPTY) {
            ret = {SELECT(a, b.first), GAMETE_EMPTY};
        } else {
            ret = {SELECT(a, b.first), SELECT(a, b.second)};
        }
    }
244
245
246
    /*MSG_DEBUG("" << a << " * " << b << " = " << ret);*/
    return ret;
}
247
#endif
248
249
250
251


#define SELECT_A(__p, __b) ((__b) == GAMETE_R ? (__p).second_allele : (__p).first_allele)

252
inline
253
254
255
256
257
258
259
260
261
262
263
264
265
bn_label_type operator * (bn_label_type a, bn_label_type b)
{
    bn_label_type ret;
    if (a.second == GAMETE_EMPTY) {
        ret = {a.first, b.first, a.first_allele, b.first_allele};
    } else {
        if (b.second == GAMETE_EMPTY) {
            ret = {SELECT(a, b.first), GAMETE_EMPTY, SELECT_A(a, b.first), 0};
        } else {
            ret = {SELECT(a, b.first), SELECT(a, b.second), SELECT_A(a, b.first), SELECT_A(a, b.second)};
        }
    }
    /*MSG_DEBUG("" << a << " * " << b << " = " << ret);*/
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
    return ret;
}


template <typename F> struct make_one;
template <> struct make_one<MatrixXd> {
    static MatrixXd& _(bool der) {
        static MatrixXd one = MatrixXd::Ones(1, 1);
        static MatrixXd zero = MatrixXd::Zero(1, 1);
        return der ? zero : one;
    }
};
template <> struct make_one<VectorXd> {
    static VectorXd& _(bool der) {
        static VectorXd one = VectorXd::Ones(1);
        static VectorXd zero = VectorXd::Zero(1);
        return der ? zero : one;
    }
};


287
288
289
290
291
292
293
294
295
296
template <typename PARENT_TYPE, typename STATE_TYPE>
struct rw_comb : public rw_any<rw_comb<PARENT_TYPE, STATE_TYPE>> {
    typedef combination_type<PARENT_TYPE, STATE_TYPE> comb_type;

    virtual ~rw_comb() {}

    using rw_any<rw_comb<PARENT_TYPE, STATE_TYPE>>::fourcc;
    using rw_any<rw_comb<PARENT_TYPE, STATE_TYPE>>::ref;
    using rw_any<rw_comb<PARENT_TYPE, STATE_TYPE>>::operator ();

297
298
    void operator () (ifile& ifs, bn_label_type& l) { l.compact() = read_int(ifs); }
    void operator () (ofile& ofs, const bn_label_type& l) { write_int(ofs, l.compact()); }
299

300
301
    void operator () (ifile& fs, typename comb_type::key_type& key) { ref() (fs, key.parent); ref() (fs, key.state); }
    void operator () (ofile& fs, const typename comb_type::key_type& key) { ref() (fs, key.parent); ref() (fs, key.state); }
302

303
304
    void operator () (ifile& fs, typename comb_type::key_list& keys) { ref() (fs, keys.keys); }
    void operator () (ofile& fs, const typename comb_type::key_list& keys) { ref() (fs, keys.keys); }
305

306
307
    void operator () (ifile& fs, typename comb_type::element_type& elem) { ref() (fs, elem.keys); ref() (fs, elem.coef); }
    void operator () (ofile& fs, const typename comb_type::element_type& elem) { ref() (fs, elem.keys); ref() (fs, elem.coef); }
308

309
    void operator () (ifile& fs, comb_type& comb)
310
311
312
313
314
    {
        if (fourcc(fs, "COMB")) { return; }
        ref() (fs, comb.m_combination);
    }

315
    void operator () (ofile& fs, const comb_type& comb)
316
317
318
319
320
321
322
323
324
325
326
327
328
329
    {
        if (fourcc(fs, "COMB")) { return; }
        ref() (fs, comb.m_combination);
    }
};


struct rw_tree : public rw_any<rw_tree> {
    virtual ~rw_tree() {}

    using rw_any<rw_tree>::fourcc;
    using rw_any<rw_tree>::ref;
    using rw_any<rw_tree>::operator ();

330
331
    void operator () (ifile& fs, pedigree_tree_type::node_type& node) { ref() (fs, node.p1); ref() (fs, node.p2); }
    void operator () (ofile& fs, const pedigree_tree_type::node_type& node) { ref() (fs, node.p1); ref() (fs, node.p2); }
332

333
334
335
336
337
338
339
340
341
342
343
344
    template <typename STREAM_TYPE, typename TREE_TYPE>
        void tree_io_impl(STREAM_TYPE& fs, TREE_TYPE&& tree)
        {
            ref() (fs, tree.m_leaves);
            ref() (fs, tree.m_roots);
            ref() (fs, tree.m_nodes);
            ref() (fs, tree.m_must_recompute);
            ref() (fs, tree.m_node_number_to_ind_number);
            ref() (fs, tree.m_ind_number_to_node_number);
            ref() (fs, tree.m_original_ordering);
        }

345
    void operator () (ifile& fs, pedigree_tree_type& tree)
346
    {
347
        tree_io_impl(fs, tree);
348
349
    }

350
    void operator () (ofile& fs, const pedigree_tree_type& tree)
351
    {
352
        tree_io_impl(fs, tree);
353
    }
354
355
356
};


357
358
359
360
361
362
363
/* TODO extraire l'arbre du pedigree
 * TODO opérations sur l'arbre :
 * TODO - insérer un nouveau noeud étant donné {P1, P2} (Pi étant soit néant soit un noeud existant)
 * TODO - extraire sous-arbre étant donné {RACINE, {FEUILLES}}
 * TODO - comparer deux arbres
 * TODO - pour deux arbres comparables, déterminer la rotation du second pour matcher le premier
 */
364
365
366
367

/*
 * pedigree_type: implements all facilities to compute proper geno_matrices for any pedigree, including reentrant individuals.
 */
368
struct pedigree_type {
369
370
371
    /*
     * pedigree tree implementation
     */
Damien Leroux's avatar
Damien Leroux committed
372
    pedigree_tree_type tree;
373
374
375
376
377

    /*
     * pedigree tree metadata
     */
    typedef size_t geno_matrix_index_type;
Damien Leroux's avatar
Damien Leroux committed
378
    typedef int individual_index_type;
379
380
381
    std::vector<std::shared_ptr<geno_matrix>> generations;
    std::vector<geno_matrix_index_type> node_generations;
    std::map<individual_index_type, char> ancestor_letters;
382
    std::map<char, std::string> ancestor_names;
383
    std::map<geno_matrix_index_type, std::string> generation_names;
384
    /*std::vector<VectorLC> LC;*/
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399

    /*
     * geno_matrix cache to avoid recomputing identical generations
     */
    std::map<geno_matrix_index_type, geno_matrix_index_type> cache_gamete;
    std::map<std::pair<geno_matrix_index_type, geno_matrix_index_type>, geno_matrix_index_type> cache_geno;

    /*
     * geno_matrix database
     */

    std::map<std::string, std::set<geno_matrix_index_type>> geno_matrix_by_generation_name;
    std::map<std::string, std::vector<individual_index_type>> individuals_by_generation_name;
    std::map<individual_index_type, const std::string*> generation_name_by_individual;

400
401
402
403
404
405
406
407
408
409
410
    /*
     * overlump control
     */

    size_t max_states;

    /*
     * BN metadata
     */
    size_t n_alleles;

411
412
413
414
415
416
417
418
419
420
421
422
423
    /*
     * Metadata for XML output and recreating command line
     */
    std::string filename;

    /*
     * Actual output: LC and factors for bayesian network
     */
    std::vector<std::vector<gencomb_type>> LC;
    std::vector<std::vector<std::map<bn_label_type, genotype_comb_type>>> factor_messages;
    std::vector<std::vector<size_t>> individuals_in_factors;
    /* i-th element means the i-th variable receives a message through this factor from variables in genotype_comb_type:keys */

424
425
426
427
    /*
     * default ctor
     */
    pedigree_type()
428
        : tree(), node_generations(), ancestor_letters(), ancestor_names(), generation_names(),
Damien Leroux's avatar
Damien Leroux committed
429
430
          cache_gamete(), cache_geno(),
          max_states(NONE),
431
432
433
434
          n_alleles(1),
          filename("<none>"),
          LC(),
          factor_messages()
435
436
437
438
439
440
441
442
443
    {
        __init();
    }

    void __init()
    {
        generations.emplace_back();
    }

Damien Leroux's avatar
Damien Leroux committed
444
#if 0
445
    /*
446
     * prealloc ctor
447
448
449
     */
    pedigree_type(size_t n_ind)
    {
450
        n_alleles = 1;
Damien Leroux's avatar
Damien Leroux committed
451
        max_states = NONE;
452
453
454
455
456
457
        nodes.reserve(3 * n_ind);
        /*ind_generations.reserve(n_ind);*/
        ind_number_to_node_number.reserve(n_ind);
        __init();
    }

Damien Leroux's avatar
Damien Leroux committed
458
459
    size_t last_node_index() const { return tree.size() - 1; }
#endif
460

461
    individual_index_type spawn_gamete(const std::string&, int parent_node)
462
    {
Damien Leroux's avatar
Damien Leroux committed
463
        int n = tree.add_node(parent_node);
464
        node_generations.emplace_back(node_generations[parent_node]);
Damien Leroux's avatar
Damien Leroux committed
465
466
467
468
469
        /*MSG_DEBUG_INDENT_EXPR("[compute " << gamete_name << " gamete] ");*/
        /*compute_generation(n);*/
        /*compute_LC(n);*/
        /*MSG_DEBUG_DEDENT;*/
        return n;
470
471
    }

472
    individual_index_type spawn(const std::string& generation_name, std::initializer_list<individual_index_type> parents)
473
    {
Damien Leroux's avatar
Damien Leroux committed
474
        individual_index_type ind = tree.next_ind_idx();
475
476
477
478
479
        switch (parents.size()) {
            case 0: /* ancestor */
                {
                    MSG_DEBUG_INDENT_EXPR("[compute gen #" << ind << "] ");
                    MSG_DEBUG("ANCESTOR");
Damien Leroux's avatar
Damien Leroux committed
480
481
                    int n = tree.add_node();
                    MSG_DEBUG("node=" << n << " ind=" << ind);
482
                    compute_generation(generation_name, n);
483
                    compute_LC(n);
484
485
486
487
488
489
490
                    MSG_DEBUG_DEDENT;
                }
                break;
            case 1: /* doubling */
                {
                    MSG_DEBUG_INDENT_EXPR("[compute gen #" << ind << "] ");
                    MSG_DEBUG("DOUBLING");
Damien Leroux's avatar
Damien Leroux committed
491
492
493
494
                    individual_index_type p1 = *parents.begin();
                    int g1 = spawn_gamete("M", tree.ind2node(p1));
                    int n = tree.add_node(g1, g1);
                    MSG_DEBUG("node=" << n << " ind=" << ind);
495
496
                    compute_generation(generation_name, n);
                    compute_LC(n);
Damien Leroux's avatar
Damien Leroux committed
497
                    /*compute_data_for_bn(n);*/
498
499
500
501
502
503
504
505
506
                    MSG_DEBUG_DEDENT;
                }
                break;
            case 2: /* crossing & selfing */
                {
                    MSG_DEBUG_INDENT_EXPR("[compute gen #" << ind << "] ");
                    MSG_DEBUG("CROSSING/SELFING");
                    auto i = parents.begin();
                    individual_index_type p1 = *i++;
Damien Leroux's avatar
Damien Leroux committed
507
                    int n1 = tree.ind2node(p1);
508
                    individual_index_type p2 = *i;
Damien Leroux's avatar
Damien Leroux committed
509
                    int n2 = tree.ind2node(p2);
510
                    /*MSG_DEBUG("p1=" << p1 << " p2=" << p2 << " n1=" << n1 << " n2=" << n2);*/
Damien Leroux's avatar
Damien Leroux committed
511
512
513
514
                    int g1 = spawn_gamete("M", n1);
                    int g2 = spawn_gamete("F", n2);
                    int n = tree.add_node(g1, g2);
                    MSG_DEBUG("node=" << n << " ind=" << ind);
515
516
                    compute_generation(generation_name, n);
                    compute_LC(n);
Damien Leroux's avatar
Damien Leroux committed
517
                    /*compute_data_for_bn(n);*/
518
519
520
521
522
523
524
525
                    MSG_DEBUG_DEDENT;
                }
                break;
            default:;
        };
        return ind;
    }

526
527
528
529
    /*individual_index_type crossing(std::string& generation_name, individual_index_type p1, individual_index_type p2) { return spawn(generation_name, {p1, p2}); }*/
    /*individual_index_type selfing(std::string& generation_name, individual_index_type p1) { return spawn(generation_name, {p1, p1}); }*/
    /*individual_index_type dh(std::string& generation_name, individual_index_type p1) { return spawn(generation_name, {p1}); }*/
    /*individual_index_type ancestor(std::string& generation_name) { return spawn(generation_name, {}); }*/
530
531
532
533
534
535
536
537
538
539

    individual_index_type fill_db(const std::string& name, individual_index_type ind)
    {
        geno_matrix_by_generation_name[name].insert(get_gen_index(ind)).first;
        individuals_by_generation_name[name].push_back(ind);
        auto it = individuals_by_generation_name.find(name);
        generation_name_by_individual[ind] = &it->first;
        return ind;
    }

540
541
542
543
    individual_index_type crossing(const std::string& name, individual_index_type p1, individual_index_type p2) { return fill_db(name, spawn(name, {p1, p2})); }
    individual_index_type selfing(const std::string& name, individual_index_type p1) { return fill_db(name, spawn(name, {p1, p1})); }
    individual_index_type dh(const std::string& name, individual_index_type p1) { return fill_db(name, spawn(name, {p1})); }
    individual_index_type ancestor(const std::string& name) { return fill_db(name, spawn(name, {})); }
544

Damien Leroux's avatar
Damien Leroux committed
545
    void propagate_symmetries(int n, geno_matrix& gen)
546
    {
547
        MSG_DEBUG_INDENT_EXPR("[propagate symmetries #" << n << "] ");
Damien Leroux's avatar
Damien Leroux committed
548
549
550
551
552
553
554
        std::vector<int> in, out;
        auto expr = tree.extract_expression(n, in, out);
        std::vector<pedigree_tree_type> input_trees;
        input_trees.reserve(in.size());
        for (int t: in) {
            input_trees.emplace_back(tree.extract_subtree(t));
        }
555
556
557
558
559
560
561
562
563
564
565
        /*auto recompute = tree.get_deep_recompute_vec(n);*/
        /*MSG_DEBUG("RECOMPUTE: " << recompute);*/
        auto get_lumper
            = [&, this] (int node) -> MatrixXb
            {
                /*if (tree[node].is_gamete() || recompute[node]) {*/
                    /*MSG_DEBUG("NIL lumper for node #" << node << " because" << (recompute[node] && tree[node].is_gamete() ? " recompute flag is set and it is a gamete" : tree[node].is_gamete() ? " it is a gamete" : " recompute flag is set"));*/
                    /*return {};*/
                /*}*/
                return get_node_gen(node)->collect.cast<bool>();
            };
Damien Leroux's avatar
Damien Leroux committed
566
        symmetry_propagator sp(expr);
567
        MSG_DEBUG_INDENT_EXPR("[SYMMETRIES] ");
Damien Leroux's avatar
Damien Leroux committed
568
569
570
571
572
        gen.symmetries = sp.compute_propagated_symmetries(
                [&] (int i) -> const pedigree_tree_type& { MSG_DEBUG("request subtree for input #" << i); return input_trees[i]; },
                [&] (int node) -> const symmetry_group_type& { MSG_DEBUG("request symmetries for node #" << node); return get_node_gen(node)->symmetries; },
                [&] (int node) -> const symmetry_group_type& { MSG_DEBUG("request latent symmetries for node #" << node); return get_node_gen(node)->latent_symmetries; },
                gen.labels, gen.inf_mat,
573
                get_lumper
Damien Leroux's avatar
Damien Leroux committed
574
                );
575
576
        MSG_DEBUG_DEDENT;
        MSG_DEBUG_INDENT_EXPR("[LATENT SYMMETRIES] ");
Damien Leroux's avatar
Damien Leroux committed
577
578
579
580
581
        auto temp = sp.compute_propagated_latent_symmetries(
                [&] (int i) -> const pedigree_tree_type& { MSG_DEBUG("request subtree for input #" << i); return input_trees[i]; },
                [&] (int node) -> const symmetry_group_type& { MSG_DEBUG("request symmetries for node #" << node); return get_node_gen(node)->symmetries; },
                [&] (int node) -> const symmetry_group_type& { MSG_DEBUG("request latent symmetries for node #" << node); return get_node_gen(node)->latent_symmetries; },
                gen.labels, gen.inf_mat,
582
                get_lumper
Damien Leroux's avatar
Damien Leroux committed
583
                );
584
        MSG_DEBUG_DEDENT;
Damien Leroux's avatar
Damien Leroux committed
585
586
        MSG_DEBUG(temp);
        gen.latent_symmetries = temp - gen.symmetries;
587
        MSG_DEBUG_INDENT_EXPR("[AFTER SYMMETRY PROPAGATION] ");
Damien Leroux's avatar
Damien Leroux committed
588
        MSG_DEBUG(gen);
589
        MSG_DEBUG_DEDENT;
590
        MSG_DEBUG_DEDENT;
591
592
    }

593
    void compute_generation(const std::string& generation_name, int n)
594
    {
Damien Leroux's avatar
Damien Leroux committed
595
        MSG_DEBUG("Computing generation for node " << tree.make_node_label(n));
596
        /*MSG_DEBUG(render_tree());*/
597

Damien Leroux's avatar
Damien Leroux committed
598
599
        int np1 = tree.get_p1(n);
        int np2 = tree.get_p2(n);
600
601
602
        node_generations.emplace_back(generations.size());
        geno_matrix new_gen;
        geno_matrix_index_type* cached_gen = NULL;
Damien Leroux's avatar
Damien Leroux committed
603
        if (np1 == NONE && np2 == NONE) {
604
605
606
            /* ancestor */
            char l = 'a' + ancestor_letters.size();
            ancestor_letters[n] = l;
607
            ancestor_names[l] = generation_name;
608
            new_gen = ancestor_matrix(generation_name, l);
Damien Leroux's avatar
Damien Leroux committed
609
        } else if (np2 == NONE) {
610
611
            /* gamete */
            auto gp = node_generations[np1];
Damien Leroux's avatar
Damien Leroux committed
612
            auto& cache = cache_gamete;
613
614
615
616
617
618
            cached_gen = &cache[gp];
            if (*cached_gen) {
                MSG_DEBUG("GENERATION HAS ALREADY BEEN COMPUTED");
                node_generations[n] = *cached_gen;
                return;
            }
Damien Leroux's avatar
Damien Leroux committed
619
            new_gen = kronecker(*generations[gp], gamete);
620
            new_gen.name = generation_name;
621
622
            /*MSG_DEBUG("TMP GAMETE GEN");*/
            /*MSG_DEBUG(new_gen);*/
623
        } else {
624
625
            /*auto ngp1 = node_generations[np1];*/
            /*auto ngp2 = node_generations[np2];*/
Damien Leroux's avatar
Damien Leroux committed
626
627
628
            /*auto gp1 = generations[ngp1];*/
            /*auto gp2 = generations[ngp2];*/
            MSG_DEBUG("Child of " << tree.node2ind(tree.get_p1(np1)) << " and " << tree.node2ind(tree.get_p1(np2)));
629

630
631
632
633
            /* use node's grandparents generations, not parents (no gamete generation) */
            size_t g1 = node_generations[tree.get_p1(np1)];
            size_t g2 = node_generations[tree.get_p1(np2)];
            cached_gen = &cache_geno[{g1, g2}];
634
635
636
637
638
639
            if (*cached_gen) {
                MSG_DEBUG("GENERATION HAS ALREADY BEEN COMPUTED");
                node_generations[n] = *cached_gen;
                return;
            }

Damien Leroux's avatar
Damien Leroux committed
640
641
            const auto& recompute = tree.get_recompute_vec(n);

642
643
644
            std::vector<bool> visited_clear(recompute.size(), false);
            std::vector<bool> visited;

645
646
            new_gen.name = generation_name;

647
648
649
650
651
652
            visited = visited_clear;
            MSG_DEBUG("COMPUTING INF_MAT");
            new_gen.inf_mat = eval(n, &geno_matrix::inf_mat, &pedigree_type::kron_d, recompute, visited);
            MSG_DEBUG(MATRIX_SIZE(new_gen.inf_mat));
            visited = visited_clear;
            MSG_DEBUG("COMPUTING DIAG");
653
            new_gen.diag = eval(n, &geno_matrix::diag, &pedigree_type::kron_d_diag, recompute, visited);
654
655
656
657
658
659
660
661
662
663
664
            visited = visited_clear;
            MSG_DEBUG("COMPUTING STAT_DIST");
            new_gen.stat_dist = eval(n, &geno_matrix::stat_dist, &pedigree_type::kron, recompute, visited);
            visited = visited_clear;
            MSG_DEBUG("COMPUTING P");
            new_gen.p = eval(n, &geno_matrix::p, &pedigree_type::kron, recompute, visited);
            visited = visited_clear;
            MSG_DEBUG("COMPUTING P_INV");
            new_gen.p_inv = eval(n, &geno_matrix::p_inv, &pedigree_type::kron_d, recompute, visited);
            /*new_gen.labels = eval_labels(n, recompute, visited_clear);*/
            new_gen.labels = eval_vector(n, recompute, &pedigree_type::get_labels, reentrant_label);
Damien Leroux's avatar
Damien Leroux committed
665
            new_gen.variant = (tree[n].is_genotype()
666
                               ? Geno
Damien Leroux's avatar
Damien Leroux committed
667
                               : Gamete);
668
669
670
671
672
673
674
675
            new_gen.dispatch = new_gen.collect = MatrixXd::Identity(new_gen.diag.size(), new_gen.diag.size());
            MSG_DEBUG(MATRIX_SIZE(new_gen.inf_mat));
            MSG_DEBUG(MATRIX_SIZE(new_gen.p));
            MSG_DEBUG(MATRIX_SIZE(new_gen.p_inv));
            MSG_DEBUG(MATRIX_SIZE(new_gen.diag));
            MSG_DEBUG("new_gen.labels.size()=" << new_gen.labels.size());
            MSG_QUEUE_FLUSH();

Damien Leroux's avatar
Damien Leroux committed
676
            /*if (!(ind_number_to_node_number.size() == 9 && tree.size() == 23)) {*/
677
                /*MSG_DEBUG("PROPAGATING SYMMETRIES");*/
678
                /*propagate_symmetries(new_gen, recompute, n);*/
679
680
                /*study_expression_symmetries(new_gen);*/
                /*complete_symmetries(new_gen);*/
681
                /*MSG_DEBUG("COMPUTING LATENT SYMMETRY");*/
682
            /*}*/
683
684
685
        }
        node_generations[n] = generations.size();
        generations.emplace_back(new geno_matrix());
686
687
        /*MSG_DEBUG("BEFORE LUMPING");*/
        /*MSG_DEBUG(new_gen);*/
688
        *generations.back() = lump(new_gen, max_states);
689
690
691
        /*if (tree[n].is_crossing()) {*/
            /*propagate_symmetries(n, *generations.back());*/
        /*} else if (tree[n].is_ancestor()) {*/
Damien Leroux's avatar
Damien Leroux committed
692
            generations.back()->symmetries = symmetry_group_type(generations.back()->labels);
693
        /*}*/
694
695
696
697
698
        /**node_generations[n] = lump(new_gen);*/
        if (cached_gen) {
            *cached_gen = node_generations[n];
        }
        MSG_DEBUG("DONE COMPUTING GENERATION FOR NODE #" << n);
699
        MSG_DEBUG_INDENT_EXPR("[RESULT " << tree.make_node_label(n) << " gen#" << node_generations[n] << "] ");
700
701
        MSG_DEBUG((*generations.back()));
        MSG_DEBUG_DEDENT;
702
        /*MSG_DEBUG((*generations[node_generations[n]]));*/
703
704
705
        MSG_DEBUG("=========================================================================");
    }

706
    std::map<genotype_comb_type::key_list, double> GLC_norm_factors(const std::vector<genotype_comb_type>& expanded)
707
    {
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
        std::map<genotype_comb_type::key_list, double> ret;
        for (const auto& e: expanded) {
            const auto& elem = e.m_combination.front();  /* all LC are singletons in the expanded vector */
            for (const auto& k: elem.keys) {
                auto sub_k = elem.keys - k;
                ret[sub_k] += elem.coef;
            }
        }
        return ret;
    }

    void compute_data_for_bn(int n)
    {
        compute_LC(n);

        factor_messages.resize(n + 1);
        for (auto& dest_f: compute_factors(n, true)) {
            factor_messages[dest_f.first].emplace_back(std::move(dest_f.second));
726
        }
727
728
729
730
731
732
733
734
735
736
737
738
739
        for (auto& dest_f: compute_factors(n, false)) {
            factor_messages[dest_f.first].emplace_back(std::move(dest_f.second));
        }
        individuals_in_factors.resize(n + 1);
        std::vector<size_t>& iif = individuals_in_factors.back();
        std::vector<int> in;
        std::vector<int> out;
        auto expr = tree.extract_expression(n, in, out);
        iif.reserve(expr.m_nodes.size());
        for (size_t i = 0; i < expr.m_nodes.size(); ++i) {
            if (expr.m_nodes[i].is_genotype()) {
                iif.push_back(expr.original_node_number(i));
            }
740
        }
741
742
        MSG_DEBUG("INDIVIDUALS IN FACTOR: " << iif);
    }
743

744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
    void
        compute_LC(int n)
        {
            int p1 = tree.get_p1(n);
            std::vector<gencomb_type> lc;
            const geno_matrix& m = *generations[node_generations[n]];
            if (p1 == NONE) {
                lc.emplace_back(1.);
            } else {
                lc = eval_vector(tree.size() - 1, tree.get_recompute_vec(n), &pedigree_type::get_LC, reentrant_LC);
            }
            VectorLC tmp(lc.size()), lumped;
            for (size_t i = 0; i < lc.size(); ++i) {
                tmp(i) = lc[i];
            }
            lumped = m.collect.cast<gencomb_type>() * tmp;
            LC.resize(n + 1);
            LC.back().assign(lumped.data(), lumped.data() + lumped.size());
            MSG_DEBUG("Computed new LC:");
            MSG_DEBUG("" << LC.back());
764
765
        }

766
767
768
769
770
    std::map<size_t, std::map<bn_label_type, genotype_comb_type>>
        compute_factors(int n, bool up)
        {
            std::vector<genotype_comb_type> glc;
            std::vector<bn_label_type> bn_labels;
771

772
773
774
            if (tree.get_p1(n) == NONE) {
                return {};
            }
775

776
777
778
779
780
781
782
783
784
785
            if (up) {
                std::vector<bool> recompute(n + 1, false);
                recompute[n] = true;
                recompute[tree.get_p1(n)] = true;
                recompute[tree.get_p2(n)] = true;
                glc = eval_vector(tree.size() - 1, recompute, &pedigree_type::get_GLC, reentrant_GLC);
                bn_labels = eval_vector(tree.size() - 1, recompute, &pedigree_type::get_bn_labels, reentrant_bn_label);
            } else {
                glc = eval_vector(tree.size() - 1, tree.get_recompute_vec(n), &pedigree_type::get_GLC, reentrant_GLC);
                bn_labels = eval_vector(tree.size() - 1, tree.get_recompute_vec(n), &pedigree_type::get_bn_labels, reentrant_bn_label);
786
787
            }

788
789
790
791
792
793
794
            MSG_DEBUG("glc.size = " << glc.size());
            MSG_DEBUG("bn_labels.size = " << bn_labels.size());

            std::map<bn_label_type, genotype_comb_type> glc_map;
            for (size_t i = 0; i < bn_labels.size(); ++i) {
                glc_map[bn_labels[i]] += glc[i];
            }
795

796
797
798
799
800
801
802
803
804
805
            MSG_DEBUG("Corresponding GLC:");
            std::vector<genotype_comb_type> expanded_glc;
            for (const auto& kv: glc_map) {
                MSG_DEBUG("" << kv.first << " = " << kv.second);
                for (const auto& elem: kv.second.m_combination) {
                    expanded_glc.emplace_back();
                    expanded_glc.back().m_combination.emplace_back(elem);
                    auto& keys = expanded_glc.back().m_combination.back().keys.keys;
                    keys.emplace_back(tree.size() - 1, kv.first);
                    std::sort(keys.begin(), keys.end());
806
                }
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
            }

            MSG_DEBUG("Sparse GLC coefs:");
            for (const auto& g: expanded_glc) {
                MSG_DEBUG("" << g);
            }

            auto glc_norm_factors = GLC_norm_factors(expanded_glc);
            for (const auto& kn: glc_norm_factors) {
                MSG_DEBUG('|' << kn.first << "| = " << kn.second);
            }

            std::map<size_t, std::map<bn_label_type, genotype_comb_type>> messages;
            size_t n_nodes = expanded_glc.front().m_combination.front().keys.keys.size();
            size_t first, last;
            if (up) {
                first = 0;
                last = n_nodes - 2;
            } else {
                first = 0;
                last = n_nodes - 1;
            }
            for (const auto& lc: expanded_glc) {
                const auto& elems = lc.m_combination.front();
                const auto& keys = elems.keys.keys;
                for (size_t ni = first; ni <= last; ++ni) {
                    genotype_comb_type tmp;
                    tmp.m_combination.emplace_back(elems.coef);
                    auto& msg_keys = tmp.m_combination.back().keys.keys;
                    size_t i;
                    for (i = 0; i < ni; ++i) {
                        msg_keys.emplace_back(keys[i]);
                    }
                    for (++i; i < n_nodes; ++i) {
                        msg_keys.emplace_back(keys[i]);
                    }
                    tmp.m_combination.front().coef /= glc_norm_factors[tmp.m_combination.back().keys];
                    messages[keys[ni].parent][keys[ni].state] += tmp;
845
846
847
                }
            }

848
849
850
851
852
            for (const auto& kv1: messages) {
                MSG_DEBUG("MESSAGE TOWARDS #" << kv1.first);
                for (const auto& kv2: kv1.second) {
                    MSG_DEBUG("" << kv2.first << " = " << kv2.second);
                }
853
            }
854
855

            return messages;
856
857
858
859
860
861
862
863
864
865
866
867
868
869
        }


    static MatrixXd kron(const MatrixXd& m1, const MatrixXd& m2)
    {
        return kroneckerProduct(m1, m2);
    }

    static MatrixXd kron_d(const MatrixXd& m1, const MatrixXd& m2)
    {
        return kroneckerProduct(m1, MatrixXd::Identity(m2.rows(), m2.cols()))
             + kroneckerProduct(MatrixXd::Identity(m1.rows(), m1.cols()), m2);
    }

870
871
872
873
874
875
    static MatrixXd kron_d_diag(const MatrixXd& m1, const MatrixXd& m2)
    {
        return kroneckerProduct(m1, MatrixXd::Ones(m2.rows(), m2.cols()))
             + kroneckerProduct(MatrixXd::Ones(m1.rows(), m1.cols()), m2);
    }

876
877
    char ancestor_letter(size_t a) const
    {
Damien Leroux's avatar
Damien Leroux committed
878
        auto i = ancestor_letters.find(tree.ind2node(a));
879
880
881
        return i == ancestor_letters.end() ? 0 : i->second;
    }

882
    geno_matrix_index_type get_gen_index(size_t ind) const
883
    {
Damien Leroux's avatar
Damien Leroux committed
884
        return node_generations[tree.ind2node(ind)];
885
886
887
888
889
890
891
892
    }

    const std::shared_ptr<geno_matrix> get_gen(size_t ind) const
    {
        return generations[get_gen_index(ind)];
    }

    const geno_matrix&
Damien Leroux's avatar
Damien Leroux committed
893
        get_geno_matrix_by_individual(size_t ind) const { return *generations[node_generations[tree.ind2node(ind)]]; }
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
    const std::set<geno_matrix_index_type>&
        get_geno_matrices_by_name(const std::string& name) const { return geno_matrix_by_generation_name.find(name)->second; }
    const std::string&
        get_generation_name_by_individual(size_t ind) const { return *generation_name_by_individual.find(ind)->second; }

    const std::shared_ptr<geno_matrix> get_node_gen(size_t node) const
    {
        return generations[node_generations[node]];
    }

    typedef MatrixXd (* KronFunc) (const MatrixXd&, const MatrixXd&);

    template <typename FIELD_TYPE>
    FIELD_TYPE eval(size_t node, FIELD_TYPE geno_matrix::* field, KronFunc func, const std::vector<bool>& recompute, std::vector<bool>& visited) const
    {
909
        scoped_indent _;
910
        /*MSG_DEBUG("eval node " << node);*/
911
        if (visited[node]) {
912
            /*MSG_DEBUG("already visited => 1");*/
913
            return make_one<FIELD_TYPE>::_(func == kron_d || func == kron_d_diag);
914
915
        }
        visited[node] = true;
Damien Leroux's avatar
Damien Leroux committed
916
        if (recompute[node] || tree[node].is_gamete()) {
917
            FIELD_TYPE ret, m1, m2;
Damien Leroux's avatar
Damien Leroux committed
918
919
920
921
922
923
924
925
            if (tree[node].is_genotype()) {
                m1 = eval(tree.get_p1(node), field, func, recompute, visited);
                m2 = eval(tree.get_p2(node), field, func, recompute, visited);
                ret = func(m1, m2);
            } else {
                m1 = eval(tree.get_p1(node), field, func, recompute, visited);
                ret = func(m1, gamete.*field);
            }
926
927
            return ret;
        } else {
928
929
            /*MSG_DEBUG("using actual matrix");*/
            /*MSG_DEBUG((*generations[node_generations[node]]).*field);*/
930
931
932
933
934
935
936
937
938
939
940
941
            return (*generations[node_generations[node]]).*field;
        }
        return {};
    }

    template <typename VALUE_TYPE>
    struct vector_iterator {
        typedef std::vector<VALUE_TYPE> vector_type;
        vector_type data;
        typename vector_type::const_iterator begin, end, cur;
        vector_iterator() : data(), begin(data.begin()), end(data.end()), cur(data.begin()) {}
        vector_iterator(const vector_type& l) : data(l), begin(data.begin()), end(data.end()), cur(data.begin()) {}
942
        void reset() { cur = begin = data.begin(); end = data.end(); }
943
944
945
946
947
        void start() { cur = begin; }
        bool next() { if (at_end()) return true; return ++cur == end; }
        bool at_end() const { return cur == end; }
        size_t size() const { return end - begin; }
        const VALUE_TYPE& operator * () const { return *cur; }
948
        const VALUE_TYPE* operator -> () const { return &*cur; }
949
950
951
952
953
954
955
956
957
958
959
    };

    typedef vector_iterator<label_type> label_iterator;
    typedef vector_iterator<symmetry_table_type> symmetry_iterator;

    template <typename VALUE_TYPE>
        VALUE_TYPE eval_one(size_t node, const std::vector<bool>& recompute, const std::vector<vector_iterator<VALUE_TYPE>>& iterators,
                            const std::vector<size_t>& node_to_iterator, std::vector<bool>& visited,
                            VALUE_TYPE (&eval_reent)(size_t, const VALUE_TYPE&),
                            std::vector<VALUE_TYPE>& reent) const
        {
960
            /*scoped_indent _(MESSAGE("[eval #" << node << "] "));*/
961
962
963
            if (visited[node]) {
                auto ret = eval_reent(node, reent[node]);
                /*ret = eval_reent(node, iterators[node_to_iterator[node]]);*/
964
                /*MSG_DEBUG("reentrant; " << ret);*/
965
966
967
                return ret;
            } else {
                visited[node] = true;
Damien Leroux's avatar
Damien Leroux committed
968
969
970
971
972
973
974
975
976
977
978
979
980
                if (recompute[node] || tree[node].is_gamete()) {
                    if (tree[node].is_genotype()) {
                        /*MSG_DEBUG("eval p1");*/
                        auto p1 = eval_one(tree.get_p1(node), recompute, iterators, node_to_iterator, visited, eval_reent, reent);
                        /*MSG_DEBUG("p1 = " << p1);*/
                        /*MSG_DEBUG("eval p2");*/
                        auto p2 = eval_one(tree.get_p2(node), recompute, iterators, node_to_iterator, visited, eval_reent, reent);
                        /*MSG_DEBUG("p2 = " << p2);*/
                        reent[node] = p1 * p2;
                    } else {
                        reent[node] = eval_one(tree.get_p1(node), recompute, iterators, node_to_iterator, visited, eval_reent, reent)
                                    * *iterators[node_to_iterator[node]];
                    }
981
982
983
984
                } else {
                    reent[node] = *iterators[node_to_iterator[node]];
                }
            }
985
986
            /*MSG_DEBUG("ret = " << reent[node]);*/
            /*MSG_QUEUE_FLUSH();*/
987
988
989
990
991
992
993
994
995
996
997
998
            return reent[node];
        }

    struct skip_eval_exception {};

    template <typename VALUE_TYPE>
        VALUE_TYPE eval_one(size_t node, const std::vector<bool>& recompute, const std::vector<vector_iterator<VALUE_TYPE>>& iterators,
                            const std::vector<size_t>& node_to_iterator, std::vector<bool>& visited,
                            VALUE_TYPE (&eval_reent)(size_t, const VALUE_TYPE&),
                            std::vector<VALUE_TYPE>& reent,
                            bool (&skip_predicate)(const VALUE_TYPE&)) const
        {
999
            /*scoped_indent _(MESSAGE("[eval #" << node << "] "));*/
1000
            if (visited[node]) {
For faster browsing, not all history is shown. View entire blame