pedigree.h 55 KB
Newer Older
1
2
3
4
#ifndef _SPELL_BAYES_CSV_H_
#define _SPELL_BAYES_CSV_H_

#include <iostream>
5
#include "file.h"
6
7
8
9
10
#include <string>
#include <sstream>
#include <stdexcept>
#include <vector>
#include <utility>
11
#include <unordered_set>
12
13


Damien Leroux's avatar
Damien Leroux committed
14
15
/*#include "permutation.h"*/
/*#include "symmetry.h"*/
16
17
#include "geno_matrix.h"
#include "linear_combination.h"
Damien Leroux's avatar
Damien Leroux committed
18
#include "pedigree_tree.h"
19
#include "bayes/output.h"
20
21


22
23
24
25
26
27
28
29
30
31
32
struct bn_label_type {
    char first;
    char second;
    char first_allele;
    char second_allele;
    bn_label_type() : first(0), second(0), first_allele(0), second_allele(0) {}
    bn_label_type(int) : first(0), second(0), first_allele(0), second_allele(0) {}
    bn_label_type(char f, char s, char fa, char sa)
        : first(f), second(s), first_allele(fa), second_allele(sa)
    {}

33
34
35
    int compact() const { return *(int*) this; }
    int& compact() { return *(int*) this; }

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
    friend std::ostream& operator << (std::ostream& os, const bn_label_type& bl)
    {
        if (bl.second != GAMETE_EMPTY) {
            return os << bl.first << ((int) bl.first_allele) << bl.second << ((int) bl.second_allele);
        } else {
            return os << bl.first << ((int) bl.first_allele);
        }
    }

    bool operator < (const bn_label_type& other) const
    {
        /*return first < other.first || (first == other.first*/
            /*&& (second < other.second || (second == other.second*/
            /*&& (first_allele < other.first_allele || (first_allele == other.first_allele*/
            /*&& second_allele < other.second_allele)))));*/
        return (*(int*)this) < (*(int*) &other);
    }

    bool operator == (const bn_label_type& other) const
    {
        return (*(int*)this) == (*(int*) &other);
    }
58
59
60
61
62

    bool operator != (const bn_label_type& other) const
    {
        return (*(int*)this) != (*(int*) &other);
    }
63
64
};

65
typedef combination_type<int, bn_label_type> genotype_comb_type;
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101


template <typename Arg>
int read_field(std::stringstream& s, char sep, Arg& arg)
{
    std::string field;
    std::getline(s, field, sep);
    /*MSG_DEBUG("CSV FIELD |" << field << "|");*/
    std::stringstream ss(field);
    ss >> arg;
    return 0;
}


#define do_with_arg_pack(_expr) do { using _ = int[]; (void)_{0, ((_expr), void(), 0)...}; } while(0)

template <typename... Args>
void read_csv_line(std::istream& is, char sep, Args&... args)
{
    std::string line;
    std::getline(is, line);
    /*MSG_DEBUG("CSV LINE |" << line << "|");*/
    std::stringstream ss(line);
    do_with_arg_pack(read_field(ss, sep, args));
}





struct pedigree_item {
    std::string gen_name;
    int id;
    int p1;
    int p2;

102
103
    pedigree_item() : gen_name(), id(0), p1(0), p2(0) {}

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
    pedigree_item(const char* gn, int i, int a, int b)
        : gen_name(gn), id(i), p1(a), p2(b)
    {}

    pedigree_item(std::istream& is, char field_sep=';')
        : gen_name()
    {
        id = p1 = p2 = 0;
        read_csv_line(is, field_sep, gen_name, id, p1, p2);
        if (id == p1 && id == p2 && id == 0) {
            return;
        }
        if (id <= p1 || id <= p2) {
            throw std::runtime_error("Bad ID! ID must be greater than p1 AND p2");
            /*MSG_DEBUG("BAD ID!! " << id << " must be greater than " << p1 << " AND " << p2);*/
        }
    }

    bool is_ancestor() const { return p1 == 0 && p2 == 0; }
    bool is_self() const { return p1 > 0 && p1 == p2; }
    bool is_cross() const { return p1 > 0 && p2 > 0 && p1 != p2; }
    bool is_dh() const { return p1 != p2 && p1 >= 0 && p2 >= 0 && (p1 * p2) == 0; }
    bool is_bullshit() const { return !(is_ancestor() || is_self() || is_cross() || is_dh()); }
};


std::vector<pedigree_item>
read_csv(const std::string& pedigree_file, char field_sep=';');



typedef std::map<size_t, size_t> ancestor_list_type;


138
inline
139
140
141
142
143
144
145
146
147
148
149
150
ancestor_list_type reentrants(const ancestor_list_type& a)
{
    ancestor_list_type ret;
    for (const auto& kv: a) {
        if (kv.second > 1) {
            ret.emplace(kv);
        }
    }
    return ret;
}


151
inline
152
153
154
155
156
157
158
159
160
161
ancestor_list_type operator + (const ancestor_list_type& a1, const ancestor_list_type& a2)
{
    ancestor_list_type ret(a1);
    for (const auto& kv: a2) {
        ret[kv.first] += kv.second;
    }
    return ret;
}


162
inline
163
164
165
166
167
168
169
170
171
172
173
174
175
ancestor_list_type operator / (const ancestor_list_type& a, const ancestor_list_type& restr)
{
    ancestor_list_type ret;
    for (const auto& kv: a) {
        auto i = restr.find(kv.first);
        if (i != restr.end()) {
            ret.emplace(kv.first, std::min(kv.second, i->second));
        }
    }
    return ret;
}


176
inline
177
178
179
180
181
182
183
184
185
186
187
188
ancestor_list_type operator % (const ancestor_list_type& a, const ancestor_list_type& restr)
{
    ancestor_list_type ret;
    for (const auto& kv: a) {
        if (restr.find(kv.first) != restr.end()) {
            ret.emplace(kv);
        }
    }
    return ret;
}


189
inline
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
ancestor_list_type operator - (const ancestor_list_type& a, const ancestor_list_type& restr)
{
    ancestor_list_type ret;
    for (const auto& kv: a) {
        auto it = restr.find(kv.first);
        if (it == restr.end()) {
            ret.emplace(kv);
        } else if (kv.second > it->second) {
            ret.emplace(kv.first, kv.second - it->second);
        }
    }
    return ret;
}


205
inline
206
207
208
209
210
211
212
213
214
215
ancestor_list_type operator * (const ancestor_list_type& a, size_t weight)
{
    ancestor_list_type ret;
    for (const auto& kv: a) {
        ret.emplace(kv.first, kv.second * weight);
    }
    return ret;
}


216
inline
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
std::ostream& operator << (std::ostream& os, const ancestor_list_type& a)
{
    auto i = a.begin();
    auto j = a.end();
    if (i != j) {
        os << i->first << ':' << i->second;
        for (++i; i != j; ++i) {
            os << ' ' << i->first << ':' << i->second;
        }
    } else {
        os << "empty";
    }
    return os;
}


233
#if 0
234
235
236
237
238
239
240
241
242
243
244
245
label_type operator * (label_type a, label_type b)
{
    label_type ret;
    if (a.second == GAMETE_EMPTY) {
        ret = {a.first, b.first};
    } else {
        if (b.second == GAMETE_EMPTY) {
            ret = {SELECT(a, b.first), GAMETE_EMPTY};
        } else {
            ret = {SELECT(a, b.first), SELECT(a, b.second)};
        }
    }
246
247
248
    /*MSG_DEBUG("" << a << " * " << b << " = " << ret);*/
    return ret;
}
249
#endif
250
251
252
253


#define SELECT_A(__p, __b) ((__b) == GAMETE_R ? (__p).second_allele : (__p).first_allele)

254
inline
255
256
257
258
259
260
261
262
263
264
265
266
267
bn_label_type operator * (bn_label_type a, bn_label_type b)
{
    bn_label_type ret;
    if (a.second == GAMETE_EMPTY) {
        ret = {a.first, b.first, a.first_allele, b.first_allele};
    } else {
        if (b.second == GAMETE_EMPTY) {
            ret = {SELECT(a, b.first), GAMETE_EMPTY, SELECT_A(a, b.first), 0};
        } else {
            ret = {SELECT(a, b.first), SELECT(a, b.second), SELECT_A(a, b.first), SELECT_A(a, b.second)};
        }
    }
    /*MSG_DEBUG("" << a << " * " << b << " = " << ret);*/
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
    return ret;
}


template <typename F> struct make_one;
template <> struct make_one<MatrixXd> {
    static MatrixXd& _(bool der) {
        static MatrixXd one = MatrixXd::Ones(1, 1);
        static MatrixXd zero = MatrixXd::Zero(1, 1);
        return der ? zero : one;
    }
};
template <> struct make_one<VectorXd> {
    static VectorXd& _(bool der) {
        static VectorXd one = VectorXd::Ones(1);
        static VectorXd zero = VectorXd::Zero(1);
        return der ? zero : one;
    }
};


289
290
291
292
293
294
295
296
297
298
template <typename PARENT_TYPE, typename STATE_TYPE>
struct rw_comb : public rw_any<rw_comb<PARENT_TYPE, STATE_TYPE>> {
    typedef combination_type<PARENT_TYPE, STATE_TYPE> comb_type;

    virtual ~rw_comb() {}

    using rw_any<rw_comb<PARENT_TYPE, STATE_TYPE>>::fourcc;
    using rw_any<rw_comb<PARENT_TYPE, STATE_TYPE>>::ref;
    using rw_any<rw_comb<PARENT_TYPE, STATE_TYPE>>::operator ();

299
    void operator () (ifile& ifs, bn_label_type& l) { l.compact() = read_int(ifs); }
300
    void operator () (ofile& ofs, bn_label_type& l) { write_int(ofs, l.compact()); }
301

302
    void operator () (ifile& fs, typename comb_type::key_type& key) { ref() (fs, key.parent); ref() (fs, key.state); }
303
    void operator () (ofile& fs, typename comb_type::key_type& key) { ref() (fs, key.parent); ref() (fs, key.state); }
304

305
    void operator () (ifile& fs, typename comb_type::key_list& keys) { ref() (fs, keys.keys); }
306
    void operator () (ofile& fs, typename comb_type::key_list& keys) { ref() (fs, keys.keys); }
307

308
    void operator () (ifile& fs, typename comb_type::element_type& elem) { ref() (fs, elem.keys); ref() (fs, elem.coef); }
309
    void operator () (ofile& fs, typename comb_type::element_type& elem) { ref() (fs, elem.keys); ref() (fs, elem.coef); }
310

311
    void operator () (ifile& fs, comb_type& comb)
312
313
314
315
316
    {
        if (fourcc(fs, "COMB")) { return; }
        ref() (fs, comb.m_combination);
    }

317
    void operator () (ofile& fs, comb_type& comb)
318
319
320
321
322
323
324
325
326
327
328
329
330
331
    {
        if (fourcc(fs, "COMB")) { return; }
        ref() (fs, comb.m_combination);
    }
};


struct rw_tree : public rw_any<rw_tree> {
    virtual ~rw_tree() {}

    using rw_any<rw_tree>::fourcc;
    using rw_any<rw_tree>::ref;
    using rw_any<rw_tree>::operator ();

332
    void operator () (ifile& fs, pedigree_tree_type::node_type& node) { ref() (fs, node.p1); ref() (fs, node.p2); }
333
    void operator () (ofile& fs, pedigree_tree_type::node_type& node) { ref() (fs, node.p1); ref() (fs, node.p2); }
334

335
336
337
338
339
340
341
342
343
344
345
346
    template <typename STREAM_TYPE, typename TREE_TYPE>
        void tree_io_impl(STREAM_TYPE& fs, TREE_TYPE&& tree)
        {
            ref() (fs, tree.m_leaves);
            ref() (fs, tree.m_roots);
            ref() (fs, tree.m_nodes);
            ref() (fs, tree.m_must_recompute);
            ref() (fs, tree.m_node_number_to_ind_number);
            ref() (fs, tree.m_ind_number_to_node_number);
            ref() (fs, tree.m_original_ordering);
        }

347
    void operator () (ifile& fs, pedigree_tree_type& tree)
348
    {
349
        tree_io_impl(fs, tree);
350
351
    }

352
    void operator () (ofile& fs, pedigree_tree_type& tree)
353
    {
354
        tree_io_impl(fs, tree);
355
    }
356
357
358
359
360
361
362
363
364

    void operator () (ifile& fs, pedigree_item& pi)
    {
        (*this)(fs, pi.gen_name);
        (*this)(fs, pi.id);
        (*this)(fs, pi.p1);
        (*this)(fs, pi.p2);
    }

365
    void operator () (ofile& fs, pedigree_item& pi)
366
367
368
369
370
371
    {
        (*this)(fs, pi.gen_name);
        (*this)(fs, pi.id);
        (*this)(fs, pi.p1);
        (*this)(fs, pi.p2);
    }
372
373
374
};


375
376
377
378
379
380
381
/* TODO extraire l'arbre du pedigree
 * TODO opérations sur l'arbre :
 * TODO - insérer un nouveau noeud étant donné {P1, P2} (Pi étant soit néant soit un noeud existant)
 * TODO - extraire sous-arbre étant donné {RACINE, {FEUILLES}}
 * TODO - comparer deux arbres
 * TODO - pour deux arbres comparables, déterminer la rotation du second pour matcher le premier
 */
382
383
384
385

/*
 * pedigree_type: implements all facilities to compute proper geno_matrices for any pedigree, including reentrant individuals.
 */
386
struct pedigree_type {
387
388
389
390
391
    /*
     * original data
     */
    std::vector<pedigree_item> items;

392
393
394
    /*
     * pedigree tree implementation
     */
Damien Leroux's avatar
Damien Leroux committed
395
    pedigree_tree_type tree;
396
397
398
399
400

    /*
     * pedigree tree metadata
     */
    typedef size_t geno_matrix_index_type;
Damien Leroux's avatar
Damien Leroux committed
401
    typedef int individual_index_type;
402
403
404
    std::vector<std::shared_ptr<geno_matrix>> generations;
    std::vector<geno_matrix_index_type> node_generations;
    std::map<individual_index_type, char> ancestor_letters;
405
    std::map<char, std::string> ancestor_names;
406
    std::map<geno_matrix_index_type, std::string> generation_names;
407
    std::map<int, int> m_id;
408
    /*std::vector<VectorLC> LC;*/
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423

    /*
     * geno_matrix cache to avoid recomputing identical generations
     */
    std::map<geno_matrix_index_type, geno_matrix_index_type> cache_gamete;
    std::map<std::pair<geno_matrix_index_type, geno_matrix_index_type>, geno_matrix_index_type> cache_geno;

    /*
     * geno_matrix database
     */

    std::map<std::string, std::set<geno_matrix_index_type>> geno_matrix_by_generation_name;
    std::map<std::string, std::vector<individual_index_type>> individuals_by_generation_name;
    std::map<individual_index_type, const std::string*> generation_name_by_individual;

424
425
426
427
428
429
430
431
432
433
434
    /*
     * overlump control
     */

    size_t max_states;

    /*
     * BN metadata
     */
    size_t n_alleles;

435
436
437
438
439
440
441
442
443
444
445
446
447
    /*
     * Metadata for XML output and recreating command line
     */
    std::string filename;

    /*
     * Actual output: LC and factors for bayesian network
     */
    std::vector<std::vector<gencomb_type>> LC;
    std::vector<std::vector<std::map<bn_label_type, genotype_comb_type>>> factor_messages;
    std::vector<std::vector<size_t>> individuals_in_factors;
    /* i-th element means the i-th variable receives a message through this factor from variables in genotype_comb_type:keys */

448
449
450
451
    /*
     * default ctor
     */
    pedigree_type()
452
        : tree(), node_generations(), ancestor_letters(), ancestor_names(), generation_names(), m_id(),
Damien Leroux's avatar
Damien Leroux committed
453
454
          cache_gamete(), cache_geno(),
          max_states(NONE),
455
456
457
458
          n_alleles(1),
          filename("<none>"),
          LC(),
          factor_messages()
459
460
461
462
463
464
465
466
467
    {
        __init();
    }

    void __init()
    {
        generations.emplace_back();
    }

Damien Leroux's avatar
Damien Leroux committed
468
#if 0
469
    /*
470
     * prealloc ctor
471
472
473
     */
    pedigree_type(size_t n_ind)
    {
474
        n_alleles = 1;
Damien Leroux's avatar
Damien Leroux committed
475
        max_states = NONE;
476
477
478
479
480
481
        nodes.reserve(3 * n_ind);
        /*ind_generations.reserve(n_ind);*/
        ind_number_to_node_number.reserve(n_ind);
        __init();
    }

Damien Leroux's avatar
Damien Leroux committed
482
483
    size_t last_node_index() const { return tree.size() - 1; }
#endif
484

485
    individual_index_type spawn_gamete(const std::string&, int parent_node)
486
    {
Damien Leroux's avatar
Damien Leroux committed
487
        int n = tree.add_node(parent_node);
488
        node_generations.emplace_back(node_generations[parent_node]);
Damien Leroux's avatar
Damien Leroux committed
489
490
491
492
493
        /*MSG_DEBUG_INDENT_EXPR("[compute " << gamete_name << " gamete] ");*/
        /*compute_generation(n);*/
        /*compute_LC(n);*/
        /*MSG_DEBUG_DEDENT;*/
        return n;
494
495
    }

496
    individual_index_type spawn(const std::string& generation_name, std::initializer_list<individual_index_type> parents)
497
    {
Damien Leroux's avatar
Damien Leroux committed
498
        individual_index_type ind = tree.next_ind_idx();
499
500
501
502
503
        switch (parents.size()) {
            case 0: /* ancestor */
                {
                    MSG_DEBUG_INDENT_EXPR("[compute gen #" << ind << "] ");
                    MSG_DEBUG("ANCESTOR");
Damien Leroux's avatar
Damien Leroux committed
504
505
                    int n = tree.add_node();
                    MSG_DEBUG("node=" << n << " ind=" << ind);
506
                    compute_generation(generation_name, n);
507
                    compute_LC(n);
508
509
510
511
512
513
514
                    MSG_DEBUG_DEDENT;
                }
                break;
            case 1: /* doubling */
                {
                    MSG_DEBUG_INDENT_EXPR("[compute gen #" << ind << "] ");
                    MSG_DEBUG("DOUBLING");
Damien Leroux's avatar
Damien Leroux committed
515
516
517
518
                    individual_index_type p1 = *parents.begin();
                    int g1 = spawn_gamete("M", tree.ind2node(p1));
                    int n = tree.add_node(g1, g1);
                    MSG_DEBUG("node=" << n << " ind=" << ind);
519
520
                    compute_generation(generation_name, n);
                    compute_LC(n);
Damien Leroux's avatar
Damien Leroux committed
521
                    /*compute_data_for_bn(n);*/
522
523
524
525
526
527
528
529
530
                    MSG_DEBUG_DEDENT;
                }
                break;
            case 2: /* crossing & selfing */
                {
                    MSG_DEBUG_INDENT_EXPR("[compute gen #" << ind << "] ");
                    MSG_DEBUG("CROSSING/SELFING");
                    auto i = parents.begin();
                    individual_index_type p1 = *i++;
Damien Leroux's avatar
Damien Leroux committed
531
                    int n1 = tree.ind2node(p1);
532
                    individual_index_type p2 = *i;
Damien Leroux's avatar
Damien Leroux committed
533
                    int n2 = tree.ind2node(p2);
534
                    /*MSG_DEBUG("p1=" << p1 << " p2=" << p2 << " n1=" << n1 << " n2=" << n2);*/
Damien Leroux's avatar
Damien Leroux committed
535
536
537
538
                    int g1 = spawn_gamete("M", n1);
                    int g2 = spawn_gamete("F", n2);
                    int n = tree.add_node(g1, g2);
                    MSG_DEBUG("node=" << n << " ind=" << ind);
539
540
                    compute_generation(generation_name, n);
                    compute_LC(n);
Damien Leroux's avatar
Damien Leroux committed
541
                    /*compute_data_for_bn(n);*/
542
543
544
545
546
547
548
549
                    MSG_DEBUG_DEDENT;
                }
                break;
            default:;
        };
        return ind;
    }

550
551
552
553
    /*individual_index_type crossing(std::string& generation_name, individual_index_type p1, individual_index_type p2) { return spawn(generation_name, {p1, p2}); }*/
    /*individual_index_type selfing(std::string& generation_name, individual_index_type p1) { return spawn(generation_name, {p1, p1}); }*/
    /*individual_index_type dh(std::string& generation_name, individual_index_type p1) { return spawn(generation_name, {p1}); }*/
    /*individual_index_type ancestor(std::string& generation_name) { return spawn(generation_name, {}); }*/
554
555
556

    individual_index_type fill_db(const std::string& name, individual_index_type ind)
    {
557
        geno_matrix_by_generation_name[name].insert(get_gen_index(ind));
558
559
560
561
562
563
        individuals_by_generation_name[name].push_back(ind);
        auto it = individuals_by_generation_name.find(name);
        generation_name_by_individual[ind] = &it->first;
        return ind;
    }

564
565
566
567
    individual_index_type crossing(const std::string& name, individual_index_type p1, individual_index_type p2) { return fill_db(name, spawn(name, {p1, p2})); }
    individual_index_type selfing(const std::string& name, individual_index_type p1) { return fill_db(name, spawn(name, {p1, p1})); }
    individual_index_type dh(const std::string& name, individual_index_type p1) { return fill_db(name, spawn(name, {p1})); }
    individual_index_type ancestor(const std::string& name) { return fill_db(name, spawn(name, {})); }
568

Damien Leroux's avatar
Damien Leroux committed
569
    void propagate_symmetries(int n, geno_matrix& gen)
570
    {
571
        MSG_DEBUG_INDENT_EXPR("[propagate symmetries #" << n << "] ");
Damien Leroux's avatar
Damien Leroux committed
572
573
574
575
576
577
578
        std::vector<int> in, out;
        auto expr = tree.extract_expression(n, in, out);
        std::vector<pedigree_tree_type> input_trees;
        input_trees.reserve(in.size());
        for (int t: in) {
            input_trees.emplace_back(tree.extract_subtree(t));
        }
579
580
581
582
583
584
585
586
587
588
589
        /*auto recompute = tree.get_deep_recompute_vec(n);*/
        /*MSG_DEBUG("RECOMPUTE: " << recompute);*/
        auto get_lumper
            = [&, this] (int node) -> MatrixXb
            {
                /*if (tree[node].is_gamete() || recompute[node]) {*/
                    /*MSG_DEBUG("NIL lumper for node #" << node << " because" << (recompute[node] && tree[node].is_gamete() ? " recompute flag is set and it is a gamete" : tree[node].is_gamete() ? " it is a gamete" : " recompute flag is set"));*/
                    /*return {};*/
                /*}*/
                return get_node_gen(node)->collect.cast<bool>();
            };
Damien Leroux's avatar
Damien Leroux committed
590
        symmetry_propagator sp(expr);
591
        MSG_DEBUG_INDENT_EXPR("[SYMMETRIES] ");
Damien Leroux's avatar
Damien Leroux committed
592
593
594
595
596
        gen.symmetries = sp.compute_propagated_symmetries(
                [&] (int i) -> const pedigree_tree_type& { MSG_DEBUG("request subtree for input #" << i); return input_trees[i]; },
                [&] (int node) -> const symmetry_group_type& { MSG_DEBUG("request symmetries for node #" << node); return get_node_gen(node)->symmetries; },
                [&] (int node) -> const symmetry_group_type& { MSG_DEBUG("request latent symmetries for node #" << node); return get_node_gen(node)->latent_symmetries; },
                gen.labels, gen.inf_mat,
597
                get_lumper
Damien Leroux's avatar
Damien Leroux committed
598
                );
599
600
        MSG_DEBUG_DEDENT;
        MSG_DEBUG_INDENT_EXPR("[LATENT SYMMETRIES] ");
Damien Leroux's avatar
Damien Leroux committed
601
602
603
604
605
        auto temp = sp.compute_propagated_latent_symmetries(
                [&] (int i) -> const pedigree_tree_type& { MSG_DEBUG("request subtree for input #" << i); return input_trees[i]; },
                [&] (int node) -> const symmetry_group_type& { MSG_DEBUG("request symmetries for node #" << node); return get_node_gen(node)->symmetries; },
                [&] (int node) -> const symmetry_group_type& { MSG_DEBUG("request latent symmetries for node #" << node); return get_node_gen(node)->latent_symmetries; },
                gen.labels, gen.inf_mat,
606
                get_lumper
Damien Leroux's avatar
Damien Leroux committed
607
                );
608
        MSG_DEBUG_DEDENT;
Damien Leroux's avatar
Damien Leroux committed
609
610
        MSG_DEBUG(temp);
        gen.latent_symmetries = temp - gen.symmetries;
611
        MSG_DEBUG_INDENT_EXPR("[AFTER SYMMETRY PROPAGATION] ");
Damien Leroux's avatar
Damien Leroux committed
612
        MSG_DEBUG(gen);
613
        MSG_DEBUG_DEDENT;
614
        MSG_DEBUG_DEDENT;
615
616
    }

617
    void compute_generation(const std::string& generation_name, int n)
618
    {
Damien Leroux's avatar
Damien Leroux committed
619
        MSG_DEBUG("Computing generation for node " << tree.make_node_label(n));
620
        /*MSG_DEBUG(render_tree());*/
621

Damien Leroux's avatar
Damien Leroux committed
622
623
        int np1 = tree.get_p1(n);
        int np2 = tree.get_p2(n);
624
625
626
        node_generations.emplace_back(generations.size());
        geno_matrix new_gen;
        geno_matrix_index_type* cached_gen = NULL;
Damien Leroux's avatar
Damien Leroux committed
627
        if (np1 == NONE && np2 == NONE) {
628
629
630
            /* ancestor */
            char l = 'a' + ancestor_letters.size();
            ancestor_letters[n] = l;
631
            ancestor_names[l] = generation_name;
632
            new_gen = ancestor_matrix(generation_name, l);
Damien Leroux's avatar
Damien Leroux committed
633
        } else if (np2 == NONE) {
634
635
            /* gamete */
            auto gp = node_generations[np1];
Damien Leroux's avatar
Damien Leroux committed
636
            auto& cache = cache_gamete;
637
638
639
640
641
642
            cached_gen = &cache[gp];
            if (*cached_gen) {
                MSG_DEBUG("GENERATION HAS ALREADY BEEN COMPUTED");
                node_generations[n] = *cached_gen;
                return;
            }
Damien Leroux's avatar
Damien Leroux committed
643
            new_gen = kronecker(*generations[gp], gamete);
644
            new_gen.name = generation_name;
645
646
            /*MSG_DEBUG("TMP GAMETE GEN");*/
            /*MSG_DEBUG(new_gen);*/
647
        } else {
648
649
            /*auto ngp1 = node_generations[np1];*/
            /*auto ngp2 = node_generations[np2];*/
Damien Leroux's avatar
Damien Leroux committed
650
651
652
            /*auto gp1 = generations[ngp1];*/
            /*auto gp2 = generations[ngp2];*/
            MSG_DEBUG("Child of " << tree.node2ind(tree.get_p1(np1)) << " and " << tree.node2ind(tree.get_p1(np2)));
653

654
655
656
657
            /* use node's grandparents generations, not parents (no gamete generation) */
            size_t g1 = node_generations[tree.get_p1(np1)];
            size_t g2 = node_generations[tree.get_p1(np2)];
            cached_gen = &cache_geno[{g1, g2}];
658
659
660
661
662
663
            if (*cached_gen) {
                MSG_DEBUG("GENERATION HAS ALREADY BEEN COMPUTED");
                node_generations[n] = *cached_gen;
                return;
            }

Damien Leroux's avatar
Damien Leroux committed
664
665
            const auto& recompute = tree.get_recompute_vec(n);

666
667
668
            std::vector<bool> visited_clear(recompute.size(), false);
            std::vector<bool> visited;

669
670
            new_gen.name = generation_name;

671
672
673
674
675
676
            visited = visited_clear;
            MSG_DEBUG("COMPUTING INF_MAT");
            new_gen.inf_mat = eval(n, &geno_matrix::inf_mat, &pedigree_type::kron_d, recompute, visited);
            MSG_DEBUG(MATRIX_SIZE(new_gen.inf_mat));
            visited = visited_clear;
            MSG_DEBUG("COMPUTING DIAG");
677
            new_gen.diag = eval(n, &geno_matrix::diag, &pedigree_type::kron_d_diag, recompute, visited);
678
679
680
681
682
683
684
685
686
687
688
            visited = visited_clear;
            MSG_DEBUG("COMPUTING STAT_DIST");
            new_gen.stat_dist = eval(n, &geno_matrix::stat_dist, &pedigree_type::kron, recompute, visited);
            visited = visited_clear;
            MSG_DEBUG("COMPUTING P");
            new_gen.p = eval(n, &geno_matrix::p, &pedigree_type::kron, recompute, visited);
            visited = visited_clear;
            MSG_DEBUG("COMPUTING P_INV");
            new_gen.p_inv = eval(n, &geno_matrix::p_inv, &pedigree_type::kron_d, recompute, visited);
            /*new_gen.labels = eval_labels(n, recompute, visited_clear);*/
            new_gen.labels = eval_vector(n, recompute, &pedigree_type::get_labels, reentrant_label);
Damien Leroux's avatar
Damien Leroux committed
689
            new_gen.variant = (tree[n].is_genotype()
690
                               ? Geno
Damien Leroux's avatar
Damien Leroux committed
691
                               : Gamete);
692
693
694
695
696
697
698
699
            new_gen.dispatch = new_gen.collect = MatrixXd::Identity(new_gen.diag.size(), new_gen.diag.size());
            MSG_DEBUG(MATRIX_SIZE(new_gen.inf_mat));
            MSG_DEBUG(MATRIX_SIZE(new_gen.p));
            MSG_DEBUG(MATRIX_SIZE(new_gen.p_inv));
            MSG_DEBUG(MATRIX_SIZE(new_gen.diag));
            MSG_DEBUG("new_gen.labels.size()=" << new_gen.labels.size());
            MSG_QUEUE_FLUSH();

Damien Leroux's avatar
Damien Leroux committed
700
            /*if (!(ind_number_to_node_number.size() == 9 && tree.size() == 23)) {*/
701
                /*MSG_DEBUG("PROPAGATING SYMMETRIES");*/
702
                /*propagate_symmetries(new_gen, recompute, n);*/
703
704
                /*study_expression_symmetries(new_gen);*/
                /*complete_symmetries(new_gen);*/
705
                /*MSG_DEBUG("COMPUTING LATENT SYMMETRY");*/
706
            /*}*/
707
708
709
        }
        node_generations[n] = generations.size();
        generations.emplace_back(new geno_matrix());
710
711
        /*MSG_DEBUG("BEFORE LUMPING");*/
        /*MSG_DEBUG(new_gen);*/
712
        *generations.back() = lump(new_gen, max_states);
713
714
715
        /*if (tree[n].is_crossing()) {*/
            /*propagate_symmetries(n, *generations.back());*/
        /*} else if (tree[n].is_ancestor()) {*/
Damien Leroux's avatar
Damien Leroux committed
716
            generations.back()->symmetries = symmetry_group_type(generations.back()->labels);
717
        /*}*/
718
719
720
721
722
        /**node_generations[n] = lump(new_gen);*/
        if (cached_gen) {
            *cached_gen = node_generations[n];
        }
        MSG_DEBUG("DONE COMPUTING GENERATION FOR NODE #" << n);
723
        MSG_DEBUG_INDENT_EXPR("[RESULT " << tree.make_node_label(n) << " gen#" << node_generations[n] << "] ");
724
725
        MSG_DEBUG((*generations.back()));
        MSG_DEBUG_DEDENT;
726
        /*MSG_DEBUG((*generations[node_generations[n]]));*/
727
728
729
        MSG_DEBUG("=========================================================================");
    }

730
    std::map<genotype_comb_type::key_list, double> GLC_norm_factors(const std::vector<genotype_comb_type>& expanded)
731
    {
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
        std::map<genotype_comb_type::key_list, double> ret;
        for (const auto& e: expanded) {
            const auto& elem = e.m_combination.front();  /* all LC are singletons in the expanded vector */
            for (const auto& k: elem.keys) {
                auto sub_k = elem.keys - k;
                ret[sub_k] += elem.coef;
            }
        }
        return ret;
    }

    void compute_data_for_bn(int n)
    {
        compute_LC(n);

        factor_messages.resize(n + 1);
        for (auto& dest_f: compute_factors(n, true)) {
            factor_messages[dest_f.first].emplace_back(std::move(dest_f.second));
750
        }
751
752
753
754
755
756
757
758
759
760
761
762
763
        for (auto& dest_f: compute_factors(n, false)) {
            factor_messages[dest_f.first].emplace_back(std::move(dest_f.second));
        }
        individuals_in_factors.resize(n + 1);
        std::vector<size_t>& iif = individuals_in_factors.back();
        std::vector<int> in;
        std::vector<int> out;
        auto expr = tree.extract_expression(n, in, out);
        iif.reserve(expr.m_nodes.size());
        for (size_t i = 0; i < expr.m_nodes.size(); ++i) {
            if (expr.m_nodes[i].is_genotype()) {
                iif.push_back(expr.original_node_number(i));
            }
764
        }
765
766
        MSG_DEBUG("INDIVIDUALS IN FACTOR: " << iif);
    }
767

768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
    void
        compute_LC(int n)
        {
            int p1 = tree.get_p1(n);
            std::vector<gencomb_type> lc;
            const geno_matrix& m = *generations[node_generations[n]];
            if (p1 == NONE) {
                lc.emplace_back(1.);
            } else {
                lc = eval_vector(tree.size() - 1, tree.get_recompute_vec(n), &pedigree_type::get_LC, reentrant_LC);
            }
            VectorLC tmp(lc.size()), lumped;
            for (size_t i = 0; i < lc.size(); ++i) {
                tmp(i) = lc[i];
            }
            lumped = m.collect.cast<gencomb_type>() * tmp;
            LC.resize(n + 1);
            LC.back().assign(lumped.data(), lumped.data() + lumped.size());
            MSG_DEBUG("Computed new LC:");
            MSG_DEBUG("" << LC.back());
788
789
        }

790
791
792
793
794
    std::map<size_t, std::map<bn_label_type, genotype_comb_type>>
        compute_factors(int n, bool up)
        {
            std::vector<genotype_comb_type> glc;
            std::vector<bn_label_type> bn_labels;
795

796
797
798
            if (tree.get_p1(n) == NONE) {
                return {};
            }
799

800
801
802
803
804
805
806
807
808
809
            if (up) {
                std::vector<bool> recompute(n + 1, false);
                recompute[n] = true;
                recompute[tree.get_p1(n)] = true;
                recompute[tree.get_p2(n)] = true;
                glc = eval_vector(tree.size() - 1, recompute, &pedigree_type::get_GLC, reentrant_GLC);
                bn_labels = eval_vector(tree.size() - 1, recompute, &pedigree_type::get_bn_labels, reentrant_bn_label);
            } else {
                glc = eval_vector(tree.size() - 1, tree.get_recompute_vec(n), &pedigree_type::get_GLC, reentrant_GLC);
                bn_labels = eval_vector(tree.size() - 1, tree.get_recompute_vec(n), &pedigree_type::get_bn_labels, reentrant_bn_label);
810
811
            }

812
813
814
815
816
817
818
            MSG_DEBUG("glc.size = " << glc.size());
            MSG_DEBUG("bn_labels.size = " << bn_labels.size());

            std::map<bn_label_type, genotype_comb_type> glc_map;
            for (size_t i = 0; i < bn_labels.size(); ++i) {
                glc_map[bn_labels[i]] += glc[i];
            }
819

820
821
822
823
824
825
826
827
828
829
            MSG_DEBUG("Corresponding GLC:");
            std::vector<genotype_comb_type> expanded_glc;
            for (const auto& kv: glc_map) {
                MSG_DEBUG("" << kv.first << " = " << kv.second);
                for (const auto& elem: kv.second.m_combination) {
                    expanded_glc.emplace_back();
                    expanded_glc.back().m_combination.emplace_back(elem);
                    auto& keys = expanded_glc.back().m_combination.back().keys.keys;
                    keys.emplace_back(tree.size() - 1, kv.first);
                    std::sort(keys.begin(), keys.end());
830
                }
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
            }

            MSG_DEBUG("Sparse GLC coefs:");
            for (const auto& g: expanded_glc) {
                MSG_DEBUG("" << g);
            }

            auto glc_norm_factors = GLC_norm_factors(expanded_glc);
            for (const auto& kn: glc_norm_factors) {
                MSG_DEBUG('|' << kn.first << "| = " << kn.second);
            }

            std::map<size_t, std::map<bn_label_type, genotype_comb_type>> messages;
            size_t n_nodes = expanded_glc.front().m_combination.front().keys.keys.size();
            size_t first, last;
            if (up) {
                first = 0;
                last = n_nodes - 2;
            } else {
                first = 0;
                last = n_nodes - 1;
            }
            for (const auto& lc: expanded_glc) {
                const auto& elems = lc.m_combination.front();
                const auto& keys = elems.keys.keys;
                for (size_t ni = first; ni <= last; ++ni) {
                    genotype_comb_type tmp;
                    tmp.m_combination.emplace_back(elems.coef);
                    auto& msg_keys = tmp.m_combination.back().keys.keys;
                    size_t i;
                    for (i = 0; i < ni; ++i) {
                        msg_keys.emplace_back(keys[i]);
                    }
                    for (++i; i < n_nodes; ++i) {
                        msg_keys.emplace_back(keys[i]);
                    }
                    tmp.m_combination.front().coef /= glc_norm_factors[tmp.m_combination.back().keys];
                    messages[keys[ni].parent][keys[ni].state] += tmp;
869
870
871
                }
            }

872
873
874
875
876
            for (const auto& kv1: messages) {
                MSG_DEBUG("MESSAGE TOWARDS #" << kv1.first);
                for (const auto& kv2: kv1.second) {
                    MSG_DEBUG("" << kv2.first << " = " << kv2.second);
                }
877
            }
878
879

            return messages;
880
881
882
883
884
885
886
887
888
889
890
891
892
893
        }


    static MatrixXd kron(const MatrixXd& m1, const MatrixXd& m2)
    {
        return kroneckerProduct(m1, m2);
    }

    static MatrixXd kron_d(const MatrixXd& m1, const MatrixXd& m2)
    {
        return kroneckerProduct(m1, MatrixXd::Identity(m2.rows(), m2.cols()))
             + kroneckerProduct(MatrixXd::Identity(m1.rows(), m1.cols()), m2);
    }

894
895
896
897
898
899
    static MatrixXd kron_d_diag(const MatrixXd& m1, const MatrixXd& m2)
    {
        return kroneckerProduct(m1, MatrixXd::Ones(m2.rows(), m2.cols()))
             + kroneckerProduct(MatrixXd::Ones(m1.rows(), m1.cols()), m2);
    }

900
901
    char ancestor_letter(size_t a) const
    {
Damien Leroux's avatar
Damien Leroux committed
902
        auto i = ancestor_letters.find(tree.ind2node(a));
903
904
905
        return i == ancestor_letters.end() ? 0 : i->second;
    }

906
    geno_matrix_index_type get_gen_index(size_t ind) const
907
    {
Damien Leroux's avatar
Damien Leroux committed
908
        return node_generations[tree.ind2node(ind)];
909
910
911
912
913
914
915
    }

    const std::shared_ptr<geno_matrix> get_gen(size_t ind) const
    {
        return generations[get_gen_index(ind)];
    }

916
917
918
919
920
921
    int
        ind2id(int i) const
        {
            return items[i - 1].id;
        }

922
    const geno_matrix&
Damien Leroux's avatar
Damien Leroux committed
923
        get_geno_matrix_by_individual(size_t ind) const { return *generations[node_generations[tree.ind2node(ind)]]; }
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
    const std::set<geno_matrix_index_type>&
        get_geno_matrices_by_name(const std::string& name) const { return geno_matrix_by_generation_name.find(name)->second; }
    const std::string&
        get_generation_name_by_individual(size_t ind) const { return *generation_name_by_individual.find(ind)->second; }

    const std::shared_ptr<geno_matrix> get_node_gen(size_t node) const
    {
        return generations[node_generations[node]];
    }

    typedef MatrixXd (* KronFunc) (const MatrixXd&, const MatrixXd&);

    template <typename FIELD_TYPE>
    FIELD_TYPE eval(size_t node, FIELD_TYPE geno_matrix::* field, KronFunc func, const std::vector<bool>& recompute, std::vector<bool>& visited) const
    {
939
        scoped_indent _;
940
        /*MSG_DEBUG("eval node " << node);*/
941
        if (visited[node]) {
942
            /*MSG_DEBUG("already visited => 1");*/
943
            return make_one<FIELD_TYPE>::_(func == kron_d || func == kron_d_diag);
944
945
        }
        visited[node] = true;
Damien Leroux's avatar
Damien Leroux committed
946
        if (recompute[node] || tree[node].is_gamete()) {
947
            FIELD_TYPE ret, m1, m2;
Damien Leroux's avatar
Damien Leroux committed
948
949
950
951
952
953
954
955
            if (tree[node].is_genotype()) {
                m1 = eval(tree.get_p1(node), field, func, recompute, visited);
                m2 = eval(tree.get_p2(node), field, func, recompute, visited);
                ret = func(m1, m2);
            } else {
                m1 = eval(tree.get_p1(node), field, func, recompute, visited);
                ret = func(m1, gamete.*field);
            }
956
957
            return ret;
        } else {
958
959
            /*MSG_DEBUG("using actual matrix");*/
            /*MSG_DEBUG((*generations[node_generations[node]]).*field);*/
960
961
962
963
964
965
966
967
968
969
970
971
            return (*generations[node_generations[node]]).*field;
        }
        return {};
    }

    template <typename VALUE_TYPE>
    struct vector_iterator {
        typedef std::vector<VALUE_TYPE> vector_type;
        vector_type data;
        typename vector_type::const_iterator begin, end, cur;
        vector_iterator() : data(), begin(data.begin()), end(data.end()), cur(data.begin()) {}
        vector_iterator(const vector_type& l) : data(l), begin(data.begin()), end(data.end()), cur(data.begin()) {}
972
        void reset() { cur = begin = data.begin(); end = data.end(); }
973
974
975
976
977
        void start() { cur = begin; }
        bool next() { if (at_end()) return true; return ++cur == end; }
        bool at_end() const { return cur == end; }
        size_t size() const { return end - begin; }
        const VALUE_TYPE& operator * () const { return *cur; }
978
        const VALUE_TYPE* operator -> () const { return &*cur; }
979
980
981
982
983
984
985
986
987
988
989
    };

    typedef vector_iterator<label_type> label_iterator;
    typedef vector_iterator<symmetry_table_type> symmetry_iterator;

    template <typename VALUE_TYPE>
        VALUE_TYPE eval_one(size_t node, const std::vector<bool>& recompute, const std::vector<vector_iterator<VALUE_TYPE>>& iterators,
                            const std::vector<size_t>& node_to_iterator, std::vector<bool>& visited,
                            VALUE_TYPE (&eval_reent)(size_t, const VALUE_TYPE&),
                            std::vector<VALUE_TYPE>& reent) const
        {
990
            /*scoped_indent _(MESSAGE("[eval #" << node << "] "));*/
991
992
993
            if (visited[node]) {
                auto ret = eval_reent(node, reent[node]);
                /*ret = eval_reent(node, iterators[node_to_iterator[node]]);*/
994
                /*MSG_DEBUG("reentrant; " << ret);*/
995
996
997
                return ret;
            } else {
                visited[node] = true;
Damien Leroux's avatar
Damien Leroux committed
998
999
1000
                if (recompute[node] || tree[node].is_gamete()) {
                    if (tree[node].is_genotype()) {
                        /*MSG_DEBUG("eval p1");*/