model.h 65 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/* Spell-QTL  Software suite for the QTL analysis of modern datasets.
 * Copyright (C) 2016,2017  Damien Leroux <damien.leroux@inra.fr>, Sylvain Jasson <sylvain.jasson@inra.fr>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

18
19
20
#ifndef _SPEL_MODEL_MODEL_H_
#define _SPEL_MODEL_MODEL_H_

21
22
#include <stdexcept>

23
24
25
/*#include <Eigen/SVD>*/
/*#include <Eigen/QR>*/
#include "eigen.h"
Damien Leroux's avatar
Damien Leroux committed
26
#include "beta_gamma.h"
27

28
29
#include <cmath>

30

31
#include "labelled_matrix.h"
32
#include "settings.h"
33
#include "print.h"
34
#include "data/chromosome.h"
35
36
37

/*#define COMPONENT_EPSILON (1.e-10)*/
#define COMPONENT_EPSILON (active_settings->tolerance)
38
39
40

typedef labelled_matrix<Eigen::Matrix<double, -1, -1>, int, std::vector<char>> model_block_type;

41
42
43
44
struct model_block_key_struc;
typedef std::shared_ptr<model_block_key_struc> model_block_key;


Damien Leroux's avatar
Damien Leroux committed
45
46
struct model;

47
48
49
static inline
void f_test(const model& model_current, const model& model_new, int col_num, MatrixXd* pvalue, MatrixXd* lod);

Damien Leroux's avatar
Damien Leroux committed
50
51
52
53
54
55
56
57
58
struct key_already_exists : public std::exception {
    std::string m_what;
    key_already_exists(const model&, const model_block_key&);
    const char* what() const throw()
    {
        return m_what.c_str();
    }
};

59
60
typedef enum { mbk_CI, mbk_POP, mbk_Dominance, mbk_Interaction } key_type;

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
inline
collection<model_block_type>
disassemble_block_multipop(const model_block_type& block, const collection<const qtl_pop_type*>& all_pops)
{
    VectorXi keep = VectorXi::Zero(block.cols());
    int r0 = 0;
    collection<model_block_type> ret;
    ret.reserve(all_pops.size());
    for (const auto& vpop: all_pops) {
        const qtl_pop_type* pop = *vpop;
        auto sub_block = block.data.middleRows(r0, pop->size());
        size_t ncols = 0;
        for (int col = 0; col < sub_block.cols(); ++col) {
            keep(col) = !sub_block.col(col).isZero(active_settings->tolerance);
            ncols += keep(col);
        }
        /*MSG_DEBUG("disasm block keep = " << keep.transpose());*/
        /*MSG_QUEUE_FLUSH();*/
        ret.emplace_back(model_block_type{});
        auto& pop_block = *ret.back();
        pop_block.column_labels.reserve(ncols);
        pop_block.data.resize(pop->size(), ncols);
        int pcol = 0;
        for (int col = 0; col < sub_block.cols(); ++col) {
            if (keep(col)) {
                pop_block.data.col(pcol++) = sub_block.col(col);
                pop_block.column_labels.push_back(block.column_labels[col]);
            }
        }
        r0 += pop->size();
    }
    return ret;
}

inline
value<model_block_type>
assemble_block_multipop(const collection<model_block_type>& pop_blocks)
{
    std::map<std::vector<char>, int> col_indices;
    for (const auto& pb: pop_blocks) {
        for (const auto& v: pb->column_labels) {
            col_indices[v] = 0;
        }
    }

    int index = 0;
    for (auto& kv: col_indices) {
        kv.second = index++;
    }

    int r0 = 0;

    for (const auto& vpb: pop_blocks) {
        r0 += vpb->rows();
    }

    value<model_block_type> ret = model_block_type{};
    ret->data = MatrixXd::Zero(r0, col_indices.size());
    ret->column_labels.reserve(col_indices.size());
    for (const auto& kv: col_indices) {
        ret->column_labels.push_back(kv.first);
    }

    r0 = 0;

    for (const auto& vpb: pop_blocks) {
        const auto& pb = *vpb;
        for (int i = 0; i < pb.cols(); ++i) {
            int col = col_indices[pb.column_labels[i]];
            ret->data.block(r0, col, pb.rows(), 1) = pb.data.col(i);
        }
        r0 += pb.rows();
    }

    return ret;
}


139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

struct model_block_key_struc {
    key_type type;

    const chromosome* chr;
    locus_key loci;
    model_block_key left, right;

    model_block_key_struc(key_type kt, const chromosome* c, const locus_key& lk, const model_block_key& c1, const model_block_key& c2)
        : type(kt), chr(c), loci(lk), left(c1), right(c2)
    {}

    size_t
        order() const
        {
            switch (type) {
155
                case mbk_CI: return 1;
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
                case mbk_POP: return 1; // loci->depth();
                case mbk_Dominance: return 2; // 2 * loci->depth();
                case mbk_Interaction: return left->order() + right->order();
            };
            return 0;
        }

    static
        model_block_key
        cross_indicator()
        {
            model_block_key void_;
            locus_key void_lk;
            return std::make_shared<model_block_key_struc>(mbk_CI, (const chromosome*) NULL, void_lk, void_, void_);
        }

    static
        model_block_key
        pop(const chromosome* c, locus_key loci)
        {
            model_block_key void_;
            return std::make_shared<model_block_key_struc>(mbk_POP, c, loci, void_, void_);
        }

    static
        model_block_key
        dominance(const model_block_key& haplo)
        {
            model_block_key void_;
            locus_key void_lk;
            return std::make_shared<model_block_key_struc>(mbk_Dominance, (const chromosome*) NULL, void_lk, haplo, void_);
        }

    static
        model_block_key
        interaction(const model_block_key& l, const model_block_key& r)
        {
            locus_key void_lk;
            if (l < r) {
                return std::make_shared<model_block_key_struc>(mbk_Interaction, (const chromosome*) NULL, void_lk, l, r);
            } else {
                return std::make_shared<model_block_key_struc>(mbk_Interaction, (const chromosome*) NULL, void_lk, r, l);
            }
        }

    friend
        std::ostream&
        operator << (std::ostream& os, const model_block_key_struc& mbk)
        {
            switch (mbk.type) {
                case mbk_CI:
                    os << "Cross";
                    break;
                case mbk_POP:
                    os << mbk.chr->name << ':' << mbk.loci;
                    break;
                case mbk_Dominance:
                    os << "Dom(" << mbk.left << ')';
                    break;
                case mbk_Interaction:
216
                    os << '(' << mbk.left << ":" << mbk.right << ')';
217
218
219
220
                    break;
            };
            return os;
        }
221

222
223
224
225
226
227
228
229
230
231
    friend
        std::ostream&
        operator << (std::ostream& os, const model_block_key& mbk)
        {
            return os << (*mbk);
        }

    bool
        can_interact_with(const model_block_key& mbk) const
        {
232
233
234
            if (type == mbk_CI || mbk->type == mbk_CI) {
                return active_settings->cross_indicator_can_interact;
            }
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
            auto v1 = flatten();
            auto v2 = mbk->flatten();
            decltype(v1) inter(std::min(v1.size(), v2.size()));
            auto e = std::set_intersection(v1.begin(), v1.end(), v2.begin(), v2.end(), inter.begin());
            return e == inter.begin();
        }

    bool
        has_chromosome(const chromosome* c) const
        {
            switch (type) {
                case mbk_CI:
                    return false;
                case mbk_POP:
                    return chr == c;
                case mbk_Dominance:
                    return left->has_chromosome(c);
                case mbk_Interaction:
                    return left->has_chromosome(c) || right->has_chromosome(c);
            };
            return false;
        }

    bool
        has_locus(const chromosome* c, double l) const
        {
            switch (type) {
                case mbk_CI:
                    return false;
                case mbk_POP:
                    return chr == c && loci->has(l);
                case mbk_Dominance:
                    return left->has_locus(c, l);
                case mbk_Interaction:
                    return left->has_locus(c, l) || right->has_locus(c, l);
            };
            return false;
        }

    bool
        has(const model_block_key& mbk) const
        {
            return *this == *mbk
                || (left && left->has(mbk))
                || (right && right->has(mbk));
        }

    bool
        operator < (const model_block_key_struc& other) const
        {
            /* CI < POP < Dom < Inter
             * then sort on haplotypes
             * for interactions, sort on left&right children
             */
            switch (type) {
                case mbk_CI:
                    return other.type != mbk_CI;
                case mbk_POP:
                    switch (other.type) {
                        case mbk_CI:
                            return false;
                        case mbk_POP:
                            return chr < other.chr || (chr == other.chr && loci < other.loci);
                        default:
                            return true;
                    };
                case mbk_Dominance:
                    switch (other.type) {
                        case mbk_CI:
                        case mbk_POP:
                            return false;
                        case mbk_Dominance:
                            return (*left) < (*other.left);
                        case mbk_Interaction:
                            return true;
                    };
                case mbk_Interaction:
312
313
314
315
316
317
318
319
320
321
                    {
                        auto o1 = order();
                        auto o2 = other.order();
                        if (o1 < o2) {
                            return true;
                        }
                        if (o1 > o2) {
                            return false;
                        }
                    }
322
323
324
325
326
327
328
329
330
331
332
333
334
                    switch (other.type) {
                        case mbk_Interaction:
                            return (*left) < (*other.left) || ((*left) == (*other.left) && (*right) < (*other.right));
                        default:
                            return false;
                    };
            };
            return false;
        }

    friend
        inline
        bool
335
336
337
338
339
340
341
342
343
344
        operator < (const model_block_key& k1, const model_block_key& k2)
        {
            if (!k1) {
                return !!k2;
            }
            if (!k2) {
                return false;
            }
            return (*k1) < (*k2);
        }
345
346
347
348
349
350
351
352
353

    bool
        operator == (const model_block_key_struc& other) const
        {
            if (type != other.type) {
                return false;
            }
            switch (type) {
                case mbk_Interaction:
354
                    if (!((*right) == (*other.right))) {
355
356
357
                        return false;
                    }
                case mbk_Dominance:
358
                    if (!((*left) == (*other.left))) {
359
360
361
362
363
364
365
366
367
368
369
370
371
372
                        return false;
                    }
                    break;
                case mbk_POP:
                    return chr == other.chr && loci == other.loci;
                case mbk_CI:
                    return true;
            };
            return false;
        }

    friend
        inline
        bool
373
374
375
376
        operator == (const model_block_key& k1, const model_block_key& k2)
        {
            return k1 && k2 && (*k1) == (*k2);
        }
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410

    operator std::string () const { std::stringstream ret; ret << (*this); return ret.str(); }

private:
    typedef std::pair<const chromosome*, locus_key> item;

    std::vector<item>
        flatten() const
        {
            std::vector<item> ret;
            flatten(ret);
            std::sort(ret.begin(), ret.end(), [](const item& a, const item& b) { return a.first < b.first || (a.first == b.first && a.second < b.second); });
            return ret;
        }

    void
        flatten(std::vector<item>& ret) const
        {
            switch (type) {
                case mbk_Interaction:
                    right->flatten(ret);
                case mbk_Dominance:
                    left->flatten(ret);
                    break;
                case mbk_POP:
                    ret.emplace_back(chr, loci);
                case mbk_CI:
                    ;
            };
        }

};


411
struct mbk_comp {
412
    bool
413
        operator () (const model_block_key& k1, const model_block_key& k2) const
414
        {
415
            return (*k1) < (*k2);
416
        }
417
418
};

419
420

typedef std::map<model_block_key, value<model_block_type>, mbk_comp> model_block_collection;
421
422
423
424
425
426

namespace std {
    template <>
        struct hash<model_block_key> {
            size_t operator () (const model_block_key& mbk) const
            {
427
428
429
430
                std::hash<const chromosome*> hc;
                std::hash<locus_key> hlk;
                size_t accum;
#if 0
431
432
433
434
435
436
437
                /* WARNING FIXME this MUST NOT be used to hash a function parameter
                 * in a disk-cached task, because a POINTER is HASHED and the order
                 * is not guaranteed to be the same in every run.
                 */
                for (const auto& kv: mbk.selection) {
                    accum = impl::ROTATE<7>(impl::ROTATE<7>(accum * hc(kv.first)) ^ hlk(kv.second));
                }
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
#endif
                accum = 0xbadc0def;
                switch (mbk->type) {
                    case mbk_CI:
                        return 0;
                    case mbk_POP:
                        accum = 0xdeadbe3f;
                        accum = impl::ROTATE<7>(impl::ROTATE<7>(accum * hc(mbk->chr)) ^ hlk(mbk->loci));
                        break;
                    case mbk_Dominance:
                        accum = impl::ROTATE<7>(accum * operator () (mbk->left));
                        break;
                    case mbk_Interaction:
                        accum = impl::ROTATE<7>(accum * operator () (mbk->left)) ^ impl::ROTATE<13>(accum * operator () (mbk->right));
                };
453
454
455
456
457
458
459
                return accum;
            }
        };
} // namespace std



460
static inline
461
bool
462
463
464
465
466
467
around_zero(double o)
{
    return o < COMPONENT_EPSILON && o > -COMPONENT_EPSILON;
}

static inline
468
bool
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
much_smaller_than(double a, double b)
{
    return a < (COMPONENT_EPSILON * b);
}

static inline
void
set_if_much_smaller_than(double& a, double b)
{
    double tmp = COMPONENT_EPSILON * b;
    if (a < tmp) {
        a = tmp;
    }
}

484
485
486

using namespace Eigen;

487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
static inline
MatrixXd concat_right(const std::vector<MatrixXd>& mat_vec)
{
    size_t full_size = 0;
    MatrixXd ret;
    for (auto& m: mat_vec) {
        full_size += m.outerSize();
        /*MSG_DEBUG("preparing concat_right with matrix(" << m->innerSize() << ',' << m->outerSize() << ')');*/
    }
    ret.resize(mat_vec.front().innerSize(), full_size);
    full_size = 0;
    for (auto& m: mat_vec) {
        /*MSG_DEBUG("concat_right in M(" << ret.innerSize() << ',' << ret.outerSize() << ") at col " << full_size << "matrix(" << m->innerSize() << ',' << m->outerSize() << ')');*/
        /*ret.block(0, full_size, ret.innerSize(), m->outerSize()) = *m;*/
        ret.middleCols(full_size, m.outerSize()) = m;
        full_size += m.outerSize();
    }
    return ret;
}

507
static inline
508
MatrixXd concat_right(const collection<model_block_type>& mat_vec)
509
510
511
{
    size_t full_size = 0;
    MatrixXd ret;
512
513
    for (auto m: mat_vec) {
        full_size += m->outerSize();
514
        /*MSG_DEBUG("preparing concat_right with matrix(" << m->innerSize() << ',' << m->outerSize() << ')');*/
515
    }
516
    ret.resize(mat_vec.front()->innerSize(), full_size);
517
    full_size = 0;
518
    for (auto m: mat_vec) {
519
520
        /*MSG_DEBUG("concat_right in M(" << ret.innerSize() << ',' << ret.outerSize() << ") at col " << full_size << "matrix(" << m->innerSize() << ',' << m->outerSize() << ')');*/
        /*ret.block(0, full_size, ret.innerSize(), m->outerSize()) = *m;*/
521
        ret.middleCols(full_size, m->outerSize()) = m->data;
522
        full_size += m->outerSize();
523
524
525
526
    }
    return ret;
}

527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547

static inline
MatrixXd concat_right(const model_block_collection& mat_map)
{
    size_t full_size = 0;
    MatrixXd ret;
    for (auto m: mat_map) {
        full_size += m.second->outerSize();
        /*MSG_DEBUG("preparing concat_right with matrix(" << m->innerSize() << ',' << m->outerSize() << ')');*/
    }
    ret.resize(mat_map.begin()->second->innerSize(), full_size);
    full_size = 0;
    for (auto m: mat_map) {
        /*MSG_DEBUG("concat_right in M(" << ret.innerSize() << ',' << ret.outerSize() << ") at col " << full_size << "matrix(" << m->innerSize() << ',' << m->outerSize() << ')');*/
        /*ret.block(0, full_size, ret.innerSize(), m->outerSize()) = *m;*/
        ret.middleCols(full_size, m.second->outerSize()) = m.second->data;
        full_size += m.second->outerSize();
    }
    return ret;
}

Damien Leroux's avatar
Damien Leroux committed
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
static inline
MatrixXd concat_down(const std::vector<MatrixXd>& mat_vec)
{
    size_t full_size = 0;
    MatrixXd ret;
    for (auto& m: mat_vec) {
        full_size += m.innerSize();
    }
    ret.resize(full_size, mat_vec.front().outerSize());
    full_size = 0;
    for (auto& m: mat_vec) {
        ret.middleRows(full_size, m.innerSize()) = m;
        full_size += m.innerSize();
    }
    return ret;
}

565
static inline
566
MatrixXd concat_down(const std::vector<const MatrixXd*>& mat_vec)
567
568
569
{
    size_t full_size = 0;
    MatrixXd ret;
570
571
    for (auto m: mat_vec) {
        full_size += m->innerSize();
572
    }
573
    ret.resize(full_size, mat_vec.front()->outerSize());
574
    full_size = 0;
575
    for (auto m: mat_vec) {
576
577
        /*ret.block(full_size, 0, m->innerSize(), ret.outerSize()) = *m;*/
        ret.middleRows(full_size, m->innerSize()) = *m;
578
        full_size += m->innerSize();
579
580
581
582
583
584
585
586
587
    }
    return ret;
}


static inline
std::pair<int, MatrixXd>
rank_and_components(const MatrixXd& M)
{
588
    JacobiSVD<MatrixXd> svd(M, ComputeThinU);
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608

    std::cout << "Singular values " << svd.singularValues().transpose() << std::endl;
    int nzsv = svd.nonzeroSingularValues();

    return {nzsv, svd.matrixU().leftCols(nzsv)};
}


static inline
MatrixXd components(const MatrixXd& M, const MatrixXd& P)
{
    MatrixXd pnorm(P.innerSize(), P.outerSize());
    for (int i = 0; i < P.outerSize(); ++i) {
        pnorm.col(i) = P.col(i).normalized();
    }
    MatrixXd orth = M - pnorm * pnorm.transpose() * M; /* feu ! */
    return rank_and_components(orth).second;
}


609
enum class SolverType { QR };
610

Damien Leroux's avatar
Damien Leroux committed
611
612
typedef std::vector<std::map<model_block_key, MatrixXd>> constraint_list;

613
614
615
616
617
618
619
620
621
622
623
624
inline
std::ostream& operator << (std::ostream& os, const constraint_list& cl)
{
    for (const auto& map: cl) {
        for (const auto& kv: map) {
            os << kv.first << std::endl << kv.second << std::endl;
        }
        os << "---" << std::endl;
    }
    return os;
}

Damien Leroux's avatar
Damien Leroux committed
625
626

MatrixXd
627
contrast_groups(const collection<const qtl_pop_type*>& all_pops, const locus_key& lk);
Damien Leroux's avatar
Damien Leroux committed
628

Damien Leroux's avatar
Damien Leroux committed
629

630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676

struct filename_stream {
    struct filtering_streambuf : public std::streambuf {
        std::streambuf* original;
        filtering_streambuf(std::streambuf* _) : original(_) {}
    protected:
        int overflow(int ch) override
        {
            switch (ch) {
                case ',':
                case '}':
                    return ch;
                case '{':
                    ch = '-';
                    break;
                case ' ':
                    ch = '_';
                default:;
            };
            return original->sputc(ch);
        }
    };

    std::ostringstream sstream;
    filtering_streambuf rdbuf;
    std::ostream ostream;

    filename_stream()
        : sstream(), rdbuf(sstream.rdbuf()), ostream(&rdbuf)
    {}

    template <typename T>
        friend
        filename_stream& operator << (filename_stream& fs, T x)
        {
            fs.ostream << x;
            return fs;
        }

    operator
        std::string () const
        {
            return sstream.str();
        }
};


Damien Leroux's avatar
Damien Leroux committed
677
/*#define ULTRA_MEGA_PARANOID*/
678
679
680
static inline
MatrixXd matrix_inverse(const MatrixXd& m)
{
Damien Leroux's avatar
Damien Leroux committed
681
682
    /*return m.fullPivHouseholderQr().inverse();*/
    /*return m.inverse();*/
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
    /* FIXME Should NOT use SVD (see note in compute() */
    JacobiSVD<MatrixXd> inverter(m, ComputeFullV);
    auto& V = inverter.matrixV();
    VectorXd inv_sv(inverter.singularValues());
    for (int i = 0; i < inv_sv.innerSize(); ++i) {
        if (!around_zero(inv_sv(i))) {
            inv_sv(i) = 1. / inv_sv(i);
        } else {
            inv_sv(i) = 0.;
        }
    }
#ifdef ULTRA_MEGA_PARANOID
    /* CHECK THAT THIS IS STABLE BY THE BEN ISRAEL SEQUENCE */
    MatrixXd svd_ret = V * inv_sv.asDiagonal() * V.transpose();
    MatrixXd ret = svd_ret;
    MatrixXd test = 2 * ret - ret * m * ret;
    if (!test.isApprox(ret, .00001)) {
        MSG_DEBUG("ret" << std::endl << ret << std::endl << "test" << std::endl << test);
    } else {
        MSG_DEBUG("m^-1 IS GOOD! Yeah man.");
    }
    return ret;
#else
    return V * inv_sv.asDiagonal() * V.transpose();
#endif
}


711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
struct gauss_elimination {
    MatrixXd block;
    std::vector<int> leading;

    gauss_elimination(const MatrixXd& mat)
        : block(mat)
        , leading(mat.rows())
    {
        for (int i = 0; i < block.rows(); ++i) {
            find_leading_coef(i);
        }

        sort_rows(0);
        for (int ref = 0; ref < block.rows(); ++ref) {
            if (is_null(ref)) {
                break;
            }
            anihilate_coef(ref, leading[ref]);
            sort_rows(ref);
        }
    }

    bool is_null(int row) const { return leading[row] == block.cols(); }
    int not_null(int row) const { return (int) (leading[row] != block.cols()); }

    int
        rank() const
        {
            /*MSG_DEBUG("echelon form" << std::endl << block);*/
            int count = 0;
            for (int i = 0; i < block.rows(); ++i) {
                count += not_null(i);
            }
            return count;
        }

    void
        sort_rows(int start)
        {
            std::vector<int> indices(block.rows() - start);
            int i = start;
            std::generate(indices.begin(), indices.end(), [&] () { return i++; });
            std::sort(indices.begin(), indices.end(), [&](int a, int b) { return leading[a] < leading[b]; });
            int sz = (int) indices.size();
            for (i = 0; i < sz; ++i) {
                if (i > indices[i]) {
                    swap_rows(i, indices[i]);
                }
            }
        }

    void
        swap_rows(int r1, int r2)
        {
            VectorXd tmp = block.row(r1);
            block.row(r1) = block.row(r2);
            block.row(r2) = tmp;
            std::swap(leading[r1], leading[r2]);
        }

    void
        anihilate_coef(int ref, int j)
        {
            for (int i = ref + 1; i < block.rows(); ++i) {
                if (leading[i] == j) {
                    anihilate_coef_in_row(ref, i, j);
                }
            }
        }

    void
        anihilate_coef_in_row(int ref, int r, int j)
        {
            block.row(r) *= 1. / block(r, j);
            block.row(r) -= block.row(ref);
            block(r, j) = 0;
            find_leading_coef(r);
            if (not_null(r)) {
                block.row(r) *= 1. / block(r, leading[r]);
            }
        }

    void
        find_leading_coef(int r)
        {
            int j;
            for (j = 0; j < block.cols() && block(r, j) == 0; ++j);
            leading[r] = j;
        }
};

802

803
804
struct model {
    model()
805
        : m_Y(), m_blocks(), m_X(), m_rank(), m_rss(), m_coefficients(), m_solver_type(), m_computed(false), m_with_constraints(false), m_ghost_constraint(), m_all_pops(), m_ancestor_names(), m_max_order(1), m_threshold(0)
806
807
808

    {}

809
    model(const value<MatrixXd>& y, double threshold, const collection<const qtl_pop_type*>& pops, const std::map<char, std::string>& anam, size_t mo=1, SolverType st=SolverType::QR)
810
811
812
813
814
815
816
817
818
        : m_Y(y)
        , m_blocks(), m_X()
		, m_rank(), m_rss(), m_coefficients(), m_residuals()
		, m_solver_type(st)
        , m_computed(false)
        , m_with_constraints(false)
        , m_ghost_constraint()
        , m_all_pops(pops)
        , m_ancestor_names(anam)
819
        , m_max_order(mo)
820
        , m_threshold(threshold)
821
    /*{ MSG_DEBUG("new model " << __LINE__ << " with Y(" << y.innerSize() << ',' << y.outerSize() << ')'); }*/
822
823
    {}

824
    model(const value<MatrixXd>& y, double threshold, const collection<const qtl_pop_type*>& pops, size_t mo=1, SolverType st=SolverType::QR)
825
        : m_Y(y)
826
        , m_blocks(), m_X()
827
		, m_rank(), m_rss(), m_coefficients(), m_residuals()
828
829
		, m_solver_type(st)
        , m_computed(false)
Damien Leroux's avatar
Damien Leroux committed
830
        , m_with_constraints(false)
831
        , m_ghost_constraint()
Damien Leroux's avatar
Damien Leroux committed
832
        , m_all_pops(pops)
833
        , m_ancestor_names((*pops.front())->ancestor_names)
834
        , m_max_order(mo)
835
        , m_threshold(threshold)
836
837
838
839
840
    /*{ MSG_DEBUG("new model " << __LINE__ << " with Y(" << y.innerSize() << ',' << y.outerSize() << ')'); }*/
    {}

    model(const model& mo)
        : m_Y(mo.m_Y)
841
        , m_blocks(mo.m_blocks), m_X(mo.m_X)
842
		, m_rank(mo.m_rank), m_rss(mo.m_rss), m_coefficients(mo.m_coefficients)
843
        , m_residuals(mo.m_residuals)
844
845
		, m_solver_type(mo.m_solver_type)
        , m_computed(mo.m_computed)
846
847
        , m_with_constraints(mo.m_with_constraints)
        , m_ghost_constraint()
Damien Leroux's avatar
Damien Leroux committed
848
        , m_all_pops(mo.m_all_pops)
849
        , m_ancestor_names(mo.m_ancestor_names)
850
        , m_max_order(mo.m_max_order)
851
        , m_threshold(mo.m_threshold)
852
853
854
    /*{ MSG_DEBUG("new model " << __LINE__ << " with Y(" << m_Y->innerSize() << ',' << m_Y->outerSize() << ')'); }*/
    {}

855
856
857
858
859
860
861
862
863
864
    model(const value<MatrixXd>& y, const model& mo)
        : m_Y(y)
        , m_blocks(mo.m_blocks), m_X(mo.m_X)
		, m_rank(), m_rss(), m_coefficients()
        , m_residuals()
		, m_solver_type(mo.m_solver_type)
        , m_computed(false)
        , m_with_constraints(mo.m_with_constraints)
        , m_ghost_constraint()
        , m_all_pops(mo.m_all_pops)
865
        , m_ancestor_names(mo.m_ancestor_names)
866
        , m_max_order(mo.m_max_order)
867
        , m_threshold(mo.m_threshold)
868
869
870
    /*{ MSG_DEBUG("new model " << __LINE__ << " with Y(" << m_Y->innerSize() << ',' << m_Y->outerSize() << ')'); }*/
    {}

871
# if 0
872
873
    model&
        operator = (const model& mo)
874
875
        = delete;
#else
876
877
878
879
880
881
882
883
884
885
886
887
888
889
    model&
        operator = (const model& mo)
        {
            m_Y = mo.m_Y;
            m_blocks = mo.m_blocks;
            m_computed = mo.m_computed;
            m_with_constraints = mo.m_with_constraints;
            m_ghost_constraint = mo.m_ghost_constraint;
            m_X = mo.m_X;
            m_rss = mo.m_rss;
            m_coefficients = mo.m_coefficients;
            m_residuals = mo.m_residuals;
            m_rank = mo.m_rank;
            m_all_pops = mo.m_all_pops;
890
            m_ancestor_names = mo.m_ancestor_names;
891
            m_max_order = mo.m_max_order;
892
            m_threshold = mo.m_threshold;
893
894
            return *this;
        }
895

896
897
898
899
900
901
902
903
904
905
906
907
908
909
    model&
        operator = (model&& mo)
        {
            m_Y = mo.m_Y;
            m_blocks.clear();
            m_blocks.swap(mo.m_blocks);
            m_computed = mo.m_computed;
            m_with_constraints = mo.m_with_constraints;
            m_ghost_constraint = mo.m_ghost_constraint;
            m_X = mo.m_X;
            m_rss = mo.m_rss;
            m_coefficients = mo.m_coefficients;
            m_residuals = mo.m_residuals;
            m_rank = mo.m_rank;
910
            m_ancestor_names.swap(mo.m_ancestor_names);
911
            m_max_order = mo.m_max_order;
912
            m_threshold = mo.m_threshold;
913
914
            return *this;
        }
915
#endif
916

Damien Leroux's avatar
Damien Leroux committed
917
    constraint_list
918
919
920
        compute_constraint(const model_block_key& mbk, const model_block_type& mb)
        {
            constraint_list ret;
921
            if (mbk->type == mbk_CI) {
922
923
                return ret;
            /*} else if (mbk.selection.size() == 1) {*/
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
            } else if (mbk->type == mbk_POP) {
                size_t n_qtl = mb.column_labels.front().size();
                if (n_qtl == 1) {
                    /* only one chromosome: do the contrast groups trick */
                    ret = {{{mbk, contrast_groups(m_all_pops, mbk->loci)}}};
                } else {
                    std::vector<std::set<char>> uniq_letters_per_qtl(mb.column_labels.front().size());
                    /* need the epistasis magic here */
                    for (const auto& vec: mb.column_labels) {
                        auto i = uniq_letters_per_qtl.begin();
                        for (char c: vec) { i->insert(c); ++i; }
                    }
                    std::vector<size_t> letter_counts(uniq_letters_per_qtl.size());
                    for (size_t i = 0; i < letter_counts.size(); ++i) { letter_counts[i] = uniq_letters_per_qtl[i].size(); }
                    size_t start = 1;
                    size_t finish = (1 << letter_counts.size()) - 1;
                    for (size_t variant = start; variant < finish; ++variant) {
                        MatrixXd constraint = MatrixXd::Identity(1, 1);
                        for (size_t i = 0; i < letter_counts.size(); ++i) {
                            bool flat = (variant >> i) & 1;
                            MatrixXd tmp;
                            if (flat) {
                                tmp = kroneckerProduct(constraint, MatrixXd::Identity(letter_counts[i], letter_counts[i]));
                            } else {
                                tmp = kroneckerProduct(constraint, MatrixXd::Identity(letter_counts[i], letter_counts[i]));
                            }
                            constraint = tmp;
951
                        }
952
                        ret.emplace_back();
953
954
                        /*MSG_DEBUG("Created constraint");*/
                        /*MSG_DEBUG("" << constraint);*/
955
956
957
958
                        ret.back().insert({{mbk, constraint}});
                    }
                }
            } else if (mbk->type == mbk_Interaction) {
959
960
                /*MSG_DEBUG("Computing constraint for interaction " << mbk);*/
                /*MSG_QUEUE_FLUSH();*/
961
962
963
964
965
966
967
                auto b1 = m_blocks[mbk->left];
                auto b2 = m_blocks[mbk->right];
                int cols1 = b1->data.cols();
                int cols2 = b2->data.cols();
                constraint_list
                    C1 = compute_constraint(mbk->left, *b1),
                    C2 = compute_constraint(mbk->right, *b2);
968
969
970
971
972
973
974
975
976
977
                if (C1.size() == 0) {
                    C1 = {{{{mbk->left, MatrixXd::Ones(1, b1->cols())}}}};
                }
                if (C2.size() == 0) {
                    C2 = {{{{mbk->left, MatrixXd::Ones(1, b2->cols())}}}};
                }
                /*MSG_DEBUG("Computing interaction constraints from" << std::endl*/
                        /*<< "C1" << std::endl << C1*/
                        /*<< "C2" << std::endl << C2*/
                        /*);*/
978
                MatrixXd constraint;
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
                MatrixXd ghost_columns;
                if (mb.cols() < b1->cols() * b2->cols()) {
                    ghost_columns = MatrixXd::Zero(b1->cols() * b2->cols(), mb.cols());
                    int i = 0;
                    int j = 0;
                    /*MSG_DEBUG("Computing ghost columns");*/
                    /*MSG_DEBUG("L1 " << b1->column_labels);*/
                    /*MSG_DEBUG("L2 " << b2->column_labels);*/
                    for (const auto& l1: b1->column_labels) {
                        for (const auto& l2: b2->column_labels) {
                            auto il = make_interaction_label(l1, l2);
                            /*MSG_DEBUG("-- compare " << il << " and " << mb.column_labels[j]);*/
                            if (il == mb.column_labels[j]) {
                                ghost_columns(i, j++) = 1;
                            }
                            i++;
                        }
                    }
                    /*MSG_DEBUG("ghost_columns redux" << std::endl << ghost_columns);*/
                }
999
1000
                for (const auto& map1: C1) {
                    for (const auto& c1: map1) {