output.h 23 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
#ifndef _SPELL_BAYES_OUTPUT_H_
#define _SPELL_BAYES_OUTPUT_H_

#include <map>
#include <vector>
#include <string>
#include <iostream>
#include <fstream>
#include <cstring>

#include "eigen.h"
#include "error.h"
13
/*#include "generation_rs_fwd.h"*/
14
#include "input/read_trait.h"
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

/** FOURCC **/

inline
bool check_fourcc(std::ifstream& ifs, const char* fourcc)
{
    char buf[4] = {0, 0, 0, 0};
    ifs.read(buf, 4);
    return strncmp(fourcc, buf, 4);
}

inline
void write_fourcc(std::ofstream& ofs, const char* fourcc)
{
    ofs.write(fourcc, 4);
}

/** SIZE_T **/

inline
void write_size(std::ofstream& ofs, size_t sz)
{
    ofs.write((const char*) &sz, sizeof sz);
}

inline
size_t read_size(std::ifstream& ifs)
{
    size_t ret;
    ifs.read((char*) &ret, sizeof ret);
    return ret;
}

/** STRING **/

inline
std::string read_str(std::ifstream& ifs)
{
    size_t sz = read_size(ifs);
    std::vector<char> tmp(sz);
    ifs.read(&tmp[0], sz);
    return {tmp.begin(), tmp.end()};
}

inline
void write_str(std::ofstream& ofs, const std::string& s)
{
    write_size(ofs, s.size());
    ofs.write(s.c_str(), s.size());
}

/** DOUBLE **/

inline
void write_double(std::ofstream& ofs, double sz)
{
    ofs.write((const char*) &sz, sizeof sz);
}

inline
double read_double(std::ifstream& ifs)
{
    double ret;
    ifs.read((char*) &ret, sizeof ret);
    return ret;
}

/** INT **/

inline
void write_int(std::ofstream& ofs, int sz)
{
    ofs.write((const char*) &sz, sizeof sz);
}

inline
int read_int(std::ifstream& ifs)
{
    int ret;
    ifs.read((char*) &ret, sizeof ret);
    return ret;
}

98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
/** CHAR **/

inline
void write_char(std::ofstream& ofs, char sz)
{
    ofs.write((const char*) &sz, sizeof sz);
}

inline
char read_char(std::ifstream& ifs)
{
    char ret;
    ifs.read(&ret, sizeof ret);
    return ret;
}

#if 0
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
/** FAST_POLYNOM **/

inline
void write_fast_polynom(std::ofstream& ofs, const fast_polynom& fp)
{
    impl::f_polynom f = fp;
    write_int(ofs, fp.value);
    write_int(ofs, f.r_exp);
    write_int(ofs, f.s_exp);
    write_size(ofs, f.P.size());
    for (double c: f.P) {
        write_double(ofs, c);
    }
}

inline
fast_polynom read_fast_polynom(std::ifstream& ifs, int& original_key)
{
    original_key = read_int(ifs);
    impl::f_polynom ret = fast_polynom::zero;
    ret.r_exp = read_int(ifs);
    ret.s_exp = read_int(ifs);
    size_t sz = read_size(ifs);
    ret.P.resize(sz);
    for (size_t i = 0; i < sz; ++i) {
        ret.P[i] = read_double(ifs);
    }
    return ret;
}

/** ALGREBRAIC GENOTYPE **/

inline void write_algebraic_genotype(std::ofstream& ofs, const algebraic_genotype& ag)
{
    ofs.write((const char*) &ag.genotype, sizeof ag.genotype);
    ofs.write((const char*) &ag.type, sizeof ag.type);
    write_int(ofs, ag.poly.value);
}

inline algebraic_genotype read_algebraic_genotype(std::ifstream& ifs, const std::map<int, fast_polynom>& pt)
{
    algebraic_genotype ag;
    ifs.read((char*) &ag.genotype, sizeof ag.genotype);
    ifs.read((char*) &ag.type, sizeof ag.type);
    ag.poly = pt.find(read_int(ifs))->second;
    return ag;
}

/** GENOMATRIX **/

inline void write_genomatrix(std::ofstream& ofs, const GenoMatrix& mat)
{
    write_fourcc(ofs, "SGEM");
    /*std::map<decltype(fast_polynom::value), impl::f_polynom>*/
    std::set<fast_polynom> poly_table;
    for (int j = 0; j < mat.cols(); ++j) {
        for (int i = 0; i < mat.rows(); ++i) {
            poly_table.insert(mat(i, j).poly);
        }
    }
    write_size(ofs, poly_table.size());
    for (const auto& fp: poly_table) {
        write_fast_polynom(ofs, fp);
    }
    write_int(ofs, mat.cols());
    write_int(ofs, mat.rows());
    /*MSG_DEBUG("[write_genomatrix] cols=" << mat.cols() << " rows=" << mat.rows());*/
    for (int j = 0; j < mat.cols(); ++j) {
        for (int i = 0; i < mat.rows(); ++i) {
            /*write_int(ofs, mat(i, j).value);*/
            write_algebraic_genotype(ofs, mat(i, j));
        }
    }
}

inline
void read_genomatrix(std::ifstream& ifs, GenoMatrix& mat)
{
    if (check_fourcc(ifs, "SGEM")) {
        MSG_ERROR("File is not valid or has been corrupted", "");
        return;
    }
    std::map<int, fast_polynom> poly_map;

    size_t table_size = read_size(ifs);
    int key;

    for (size_t i = 0; i < table_size; ++i) {
        auto f = read_fast_polynom(ifs, key);
        poly_map[key] = f;
    }

    int cols = read_int(ifs);
    int rows = read_int(ifs);
    /*MSG_DEBUG("[read_genomatrix] cols=" << cols << " rows=" << rows);*/
    mat.resize(rows, cols);
    for (int j = 0; j < mat.cols(); ++j) {
        for (int i = 0; i < mat.rows(); ++i) {
            mat(i, j) = read_algebraic_genotype(ifs, poly_map);
        }
    }
}

/** GENERATION_RS **/

220
inline void write_geno_matrix(std::ofstream& ofs, const geno_matrix* gen)
221
222
223
224
225
226
227
228
229
230
231
{
    write_fourcc(ofs, "SGRS");
    write_str(ofs, gen->name);
    write_size(ofs, gen->P.size());
    for (const auto& p: gen->P) {
        write_double(ofs, p.weight);
        write_genomatrix(ofs, p.G.data);
    }
}

inline
232
geno_matrix* read_geno_matrix(std::ifstream& ifs)
233
234
235
236
237
238
239
{
    if (check_fourcc(ifs, "SGRS")) {
        MSG_ERROR("File is not valid or has been corrupted", "");
    }
    /*MSG_DEBUG("pouet 1"); MSG_QUEUE_FLUSH();*/
    std::string name = read_str(ifs);
    /*MSG_DEBUG("pouet 2"); MSG_QUEUE_FLUSH();*/
240
    geno_matrix* ret = geno_matrix::blank(name);
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
    /*MSG_DEBUG("pouet 3"); MSG_QUEUE_FLUSH();*/
    size_t n_p = read_size(ifs);
    /*MSG_DEBUG("Have " << n_p << " processes"); MSG_QUEUE_FLUSH();*/
    ret->P.resize(n_p);
    for (size_t i = 0; i < n_p; ++i) {
        ret->P[i].weight = read_double(ifs);
        GenoMatrix tmp;
        read_genomatrix(ifs, tmp);
        ret->P[i].G = convert(tmp);
        /*MSG_DEBUG("Read process");*/
        /*MSG_DEBUG(ret->P[i]);*/
    }
    ret->precompute();
    return ret;
}
256
257
#endif

258
259
260
261
262
263
264
265
266

/** MATRIX<SCALAR, R, C> **/

template <typename MATRIX_TYPE>
struct resize_matrix_impl;

template <> struct resize_matrix_impl<VectorXd> { void operator () (VectorXd& v, size_t rows, size_t) { v.resize(rows); } };
template <> struct resize_matrix_impl<MatrixXd> { void operator () (MatrixXd& m, size_t rows, size_t cols) { m.resize(rows, cols); } };

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
template <typename SCALAR, int ROW, int COL, int C, int D, int E>
struct resize_matrix_impl<Eigen::Matrix<SCALAR, ROW, COL, C, D, E>> {
    void operator () (Eigen::Matrix<SCALAR, ROW, COL, C, D, E>& m, size_t r, size_t c) { m.resize(r, c); }
};

template <typename SCALAR, int ROW, int C, int D, int E>
struct resize_matrix_impl<Eigen::Matrix<SCALAR, ROW, 1, C, D, E>> {
    void operator () (Eigen::Matrix<SCALAR, ROW, 1, C, D, E>& v, size_t r, size_t) { v.resize(r); }
};

template <typename SCALAR, int COL, int C, int D, int E>
struct resize_matrix_impl<Eigen::Matrix<SCALAR, 1, COL, C, D, E>> {
    void operator () (Eigen::Matrix<SCALAR, 1, COL, C, D, E>& v, size_t, size_t c) { v.resize(c); }
};

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
template <typename MATRIX_TYPE>
void resize_matrix(MATRIX_TYPE& m, size_t r, size_t c) { resize_matrix_impl<MATRIX_TYPE>()(m, r, c); }

template <typename SCALAR, int ROW, int COL, int C, int D, int E>
void read_matrix(std::ifstream& ifs, Eigen::Matrix<SCALAR, ROW, COL, C, D, E>& mat)
{
    size_t scalar_sz = read_size(ifs);
    if (scalar_sz != sizeof(SCALAR)) {
        MSG_ERROR("WRONG SIZE OF SCALAR, CAN'T READ FILE", "Make sure spell-marker and spell-qtl are always executed on machines with same word size.");
    }
    size_t n_row = read_size(ifs);
    size_t n_col = read_size(ifs);
    if (ROW != Eigen::Dynamic && ((int) n_row) != ROW) {
        MSG_ERROR("WRONG ROW COUNT. FILE IS NOT A LOCUS VECTOR FILE OR IS CORRUPTED", "You may want to run spell-marker again");
    }
    if (COL != Eigen::Dynamic && ((int) n_col) != COL) {
        MSG_ERROR("WRONG COLUMN COUNT. FILE IS NOT A LOCUS VECTOR FILE OR IS CORRUPTED", "You may want to run spell-marker again");
    }
    resize_matrix(mat, n_row, n_col);
    ifs.read((char*) mat.data(), n_row * n_col * sizeof(SCALAR));
}

template <typename SCALAR, int ROW, int COL, int C, int D, int E>
void write_matrix(std::ofstream& ofs, const Eigen::Matrix<SCALAR, ROW, COL, C, D, E>& mat)
{
    write_size(ofs, sizeof(SCALAR));
    write_size(ofs, mat.rows());
    write_size(ofs, mat.cols());
    ofs.write((const char*) mat.data(), mat.size() * sizeof(SCALAR));
}


314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
template <typename V, typename READ_ELEM_FUNC>
void read_vector(std::ifstream& ifs, std::vector<V>& vec, READ_ELEM_FUNC read_elem)
{
    size_t sz = read_size(ifs);
    vec.clear();
    vec.reserve(sz);
    for (size_t i = 0; i < sz; ++i) {
        vec.emplace_back(read_elem(ifs));
    }
}


template <typename V, typename WRITE_ELEM_FUNC>
void write_vector(std::ofstream& ofs, const std::vector<V>& vec, WRITE_ELEM_FUNC write_elem)
{
    write_size(ofs, vec.size());
    for (const auto& e: vec) {
        write_elem(ofs, e);
    }
}


/** LABEL_TYPE **/

338
inline
339
340
341
342
343
344
345
label_type read_label(std::ifstream& ifs)
{
    char f, s;
    ifs >> f >> s;
    return {f, s};
}

346
inline
347
348
349
350
351
352
353
354
void write_label(std::ofstream& ofs, const label_type& l)
{
    ofs << l.first() << l.second();
}


/** GENO_MATRIX **/

355
356
inline
void write_geno_matrix(std::ofstream& ofs, const geno_matrix& mat)
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
{
    write_fourcc(ofs, "SGEM");
    write_str(ofs, mat.name);
    /* skip variant, it's deprecated. Or should be. */
    write_vector(ofs, mat.labels, write_label);
    write_matrix(ofs, mat.inf_mat);
    write_matrix(ofs, mat.p);
    write_matrix(ofs, mat.p_inv);
    write_matrix(ofs, mat.diag);
    write_matrix(ofs, mat.stat_dist);
    write_matrix(ofs, mat.collect);
    write_matrix(ofs, mat.dispatch);
    /* also skip symmetries for now. */
}

inline
void read_geno_matrix(std::ifstream& ifs, geno_matrix& mat)
{
    if (check_fourcc(ifs, "SGEM")) {
        MSG_ERROR("File is not valid or has been corrupted", "");
        return;
    }
    mat.name = read_str(ifs);
    /* skip variant. */
    read_vector(ifs, mat.labels, read_label);
    read_matrix(ifs, mat.inf_mat);
    read_matrix(ifs, mat.p);
    read_matrix(ifs, mat.p_inv);
    read_matrix(ifs, mat.diag);
    read_matrix(ifs, mat.stat_dist);
    read_matrix(ifs, mat.collect);
    read_matrix(ifs, mat.dispatch);
    /* also skip symmetries for now. */
}


393
394
inline
void write_geno_matrix(std::ofstream& ofs, const geno_matrix* ptr)
395
396
397
398
{
    write_geno_matrix(ofs, *ptr);
}

399
inline
400
401
402
403
404
405
406
407
geno_matrix* read_geno_matrix(std::ifstream& ifs)
{
    geno_matrix* ret = new geno_matrix();
    read_geno_matrix(ifs, *ret);
    return ret;
}


408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
/** **/


struct LV_database {
    std::map<std::string, std::map<std::string, std::vector<MatrixXd>>> data;

    LV_database() : data() {}
    
    MatrixXd& operator () (const std::string& chr, const std::string& gen, size_t ind)
    {
        return data[chr][gen][ind];
    }

    const MatrixXd& operator () (const std::string& chr, const std::string& gen, size_t ind) const
    {
        return data.find(chr)->second.find(gen)->second[ind];
    }

426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
    std::map<std::string, std::vector<MatrixXd>>
        extract(const std::string& gen, const std::vector<size_t> ind_vec) const
        {
            std::map<std::string, std::vector<MatrixXd>> ret;
            for (const auto& chr_gen_lv_vec: data) {
                const std::string& chr = chr_gen_lv_vec.first;
                const auto& lv_vec = chr_gen_lv_vec.second.find(gen)->second;
                auto& ret_lv_vec = ret[chr];
                ret_lv_vec.reserve(ind_vec.size());
                for (size_t i: ind_vec) {
                    ret_lv_vec.push_back(lv_vec[i]);
                }
            }
            return ret;
        }

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
    static
        bool lv_check_fourcc(std::ifstream& ifs, const char* fourcc)
        {
            if (check_fourcc(ifs, fourcc)) {
                MSG_ERROR("FILE IS NOT A LOCUS VECTOR FILE OR IS CORRUPTED", "You may want to run spell-marker again.");
                return true;
            }
            return false;
        }

    static
        LV_database load_from(const std::string& filename)
        {
            std::ifstream ifs(filename);
            return load_from(ifs);
        }

    static
        LV_database load_from(std::ifstream& ifs)
        {
            LV_database LV;

            if (lv_check_fourcc(ifs, "SMLV")) { return {}; }
            size_t n_chrom = read_size(ifs);
            size_t n_gen = read_size(ifs);
            for (size_t c = 0; c < n_chrom; ++c) {
                if (lv_check_fourcc(ifs, "SCHR")) { return {}; }
                std::string chr_name = read_str(ifs);
                for (size_t g = 0; g < n_gen; ++g) {
                    if (lv_check_fourcc(ifs, "SGEN")) { return {}; }
                    std::string gen_name = read_str(ifs);
                    size_t n_ind = read_size(ifs);
                    LV.data[chr_name][gen_name].resize(n_ind);
                    for (size_t i = 0; i < n_ind; ++i) {
                        if (lv_check_fourcc(ifs, "SLV_")) { return {}; }
                        read_matrix(ifs, LV.data[chr_name][gen_name][i]);
                    }
                }
            }
            return LV;
        }

    void save_to(const std::string& filename)
    {
        std::ofstream ofs(filename);
        save_to(ofs);
    }

    void save_to(std::ofstream& ofs)
    {
        write_fourcc(ofs, "SMLV");
        write_size(ofs, data.size());
        write_size(ofs, data.begin()->second.size());
        for (const auto& chr_gen_vec_lv: data) {
            write_fourcc(ofs, "SCHR");
            write_str(ofs, chr_gen_vec_lv.first);
            for (const auto& gen_vec_lv: chr_gen_vec_lv.second) {
                write_fourcc(ofs, "SGEN");
                write_str(ofs, gen_vec_lv.first);
                write_size(ofs, gen_vec_lv.second.size());
                for (const auto& lv: gen_vec_lv.second) {
                    write_fourcc(ofs, "SLV_");
                    write_matrix(ofs, lv);
                }
            }
        }
    }

    friend
        std::ostream& operator << (std::ostream& os, const LV_database& LV)
        {
            for (const auto& chr_gen_vec_lv: LV.data) {
                MSG_DEBUG("CHROMOSOME " << chr_gen_vec_lv.first);
                for (const auto& gen_vec_lv: chr_gen_vec_lv.second) {
                    MSG_DEBUG("* generation " << gen_vec_lv.first);
                    size_t i = 0;
                    for (const auto& lv: gen_vec_lv.second) {
                        MSG_DEBUG("  #" << i);
                        ++i;
                        MSG_DEBUG(lv);
                    }
                }
            }
            return os;
        }
};


/** **/


533
534
535
struct qtl_pop_type {
    std::string name;
    std::vector<size_t> indices;
536
    const geno_matrix* gen;
537
538
539
    std::map<std::string, std::vector<MatrixXd>> LV;
    std::string observed_traits_filename;
    std::vector<trait> observed_traits;
540
    /*qtl_pop_type(const std::string& n, const std::vector<size_t>& ind, const geno_matrix* g,*/
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
                 /*std::vector<MatrixXd>&& lv, const std::string& otf, std::vector<trait>&& ot)*/
        /*: name(n), indices(ind), gen(g), LV(std::move(lv)), observed_traits_filename(ofs), observed_traits(std::move(ot))*/
    /*{}*/

    size_t size() const
    {
        return observed_traits.front().values.size();
    }

    const MatrixXd& get_LV(const std::string& chr, size_t i) const { return LV.find(chr)->second[i]; }
};


/** **/


557
558
559
560
561
562
struct pop_data_type {
    std::string name;
    std::map<std::string, std::string> marker_observation_filenames;
    std::string genetic_map_filename;
    std::string pedigree_filename;
    std::string qtl_generation_name;
563
    std::map<std::string, geno_matrix*> generations;
564
    LV_database LV;
565
    std::map<std::string, std::vector<int>> families;
566
    std::map<size_t, const geno_matrix*> gen_by_id;
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600

    std::string save()
    {
        static const char* forbidden = ":?*/\\";
        std::stringstream filename;
        for (char c: name) {
            if (strchr(forbidden, c)) {
                filename << '_';
            } else {
                filename << c;
            }
        }
        filename << ".popdata";
        save_to(filename.str());
        return filename.str();
    }

    void save_to(const std::string& filename)
    {
        std::ofstream ofs(filename);
        write_fourcc(ofs, "SPOP");
        write_str(ofs, name);
        write_size(ofs, marker_observation_filenames.size());
        for (const auto& kv: marker_observation_filenames) {
            write_str(ofs, kv.first);
            write_str(ofs, kv.second);
        }
        write_str(ofs, genetic_map_filename);
        write_str(ofs, pedigree_filename);
        write_str(ofs, qtl_generation_name);
        write_size(ofs, generations.size());
        for (const auto& kv: generations) {
            write_fourcc(ofs, "SGTE");
            write_str(ofs, kv.first);
601
            write_geno_matrix(ofs, kv.second);
602
603
        }
        LV.save_to(ofs);
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
        write_fourcc(ofs, "SFAM");
        write_size(ofs, families.size());
        for (const auto& kv: families) {
            write_str(ofs, kv.first);
            write_size(ofs, kv.second.size());
            for (int i: kv.second) {
                write_int(ofs, i);
            }
        }
        write_fourcc(ofs, "SGBI");
        write_size(ofs, gen_by_id.size());
        for (const auto& kv: gen_by_id) {
            write_size(ofs, kv.first);
            write_str(ofs, kv.second->name);
        }
619
620
    }

621
622
623
624
625
626
627
628
629
630
    static
        bool pop_check_fourcc(std::ifstream& ifs, const char* fourcc)
        {
            if (check_fourcc(ifs, fourcc)) {
                MSG_ERROR("Could not read FOURCC \"" << fourcc << "\". This is not a valid population data file.", "");
                return true;
            }
            return false;
        }

631
632
633
    static
        pop_data_type load_from(const std::string& filename)
        {
634
#define CHECK_4CC(_fourcc_) if (pop_check_fourcc(ifs, _fourcc_)) { return ret; }
635
636
            std::ifstream ifs(filename);
            pop_data_type ret;
637
            CHECK_4CC("SPOP");
638
639
640
641
642
643
644
645
646
647
648
649
            ret.name = read_str(ifs);
            size_t n_mof = read_size(ifs);
            for (size_t i = 0; i < n_mof; ++i) {
                std::string k = read_str(ifs);
                std::string v = read_str(ifs);
                ret.marker_observation_filenames[k] = v;
            }
            ret.genetic_map_filename = read_str(ifs);
            ret.pedigree_filename = read_str(ifs);
            ret.qtl_generation_name = read_str(ifs);
            size_t n_gen = read_size(ifs);
            for (size_t i = 0; i < n_gen; ++i) {
650
                CHECK_4CC("SGTE");
651
                std::string k = read_str(ifs);
652
                ret.generations[k] = read_geno_matrix(ifs);
653
654
            }
            ret.LV = LV_database::load_from(ifs);
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
            CHECK_4CC("SFAM");
            size_t n_fam = read_size(ifs);
            for (size_t f = 0; f < n_fam; ++f) {
                std::string k = read_str(ifs);
                size_t n_ind = read_size(ifs);
                auto& fam = ret.families[k];
                for (size_t i = 0; i < n_ind; ++i) {
                    ret.families[k].push_back(read_int(ifs));
                }
            }
            CHECK_4CC("SGBI");
            size_t n_gbi = read_size(ifs);
            for (size_t g = 0; g < n_gbi; ++g) {
                size_t k = read_size(ifs);
                std::string gen = read_str(ifs);
                ret.gen_by_id[k] = ret.generations[gen];
            }
672
673
674
            return ret;
        }

675
676
    size_t size() const { return families.find(qtl_generation_name)->second.size(); }

677
    const geno_matrix* get_geno_matrix(const std::string& family, size_t ind) const
678
679
680
681
    {
        return gen_by_id.find(families.find(family)->second[ind])->second;
    }

682
683
    std::map<const geno_matrix*, std::vector<size_t>>
        all_qtl_geno_matrix() const
684
        {
685
            std::map<const geno_matrix*, std::vector<size_t>> ret;
686
687
688
689
690
691
692
693
            size_t i = 0;
            for (size_t ind: families.find(qtl_generation_name)->second) {
                ret[gen_by_id.find(ind)->second].push_back(i);
                ++i;
            }
            return ret;
        }

Damien Leroux's avatar
Damien Leroux committed
694
    std::string extract_subpops(std::multimap<std::string, qtl_pop_type>& pops, const std::string& traits_filename, const std::vector<trait>& traits, std::vector<std::vector<const qtl_pop_type*>>& linked_pops)
695
696
697
698
699
700
701
702
703
704
705
706
707
    {
        auto extract_traits
            = [&] (const std::vector<size_t>& ind_vec)
            {
                std::vector<trait> ret;
                ret.resize(traits.size());
                for (size_t ti = 0; ti < traits.size(); ++ti) {
                    ret[ti].name = traits[ti].name;
                    ret[ti].values.reserve(ind_vec.size());
                    for (size_t i: ind_vec) { ret[ti].values.push_back(traits[ti].values[i]); }
                }
                return ret;
            };
708
        auto aqg = all_qtl_geno_matrix();
Damien Leroux's avatar
Damien Leroux committed
709
710
        linked_pops.emplace_back();
        linked_pops.back().reserve(aqg.size());
711
        for (const auto& kv: aqg) {
Damien Leroux's avatar
Damien Leroux committed
712
713
714
715
716
717
718
719
720
721
            auto it = 
                pops.insert({name, {
                    name,
                    kv.second,
                    kv.first,
                    LV.extract(qtl_generation_name, kv.second),
                    traits_filename,
                    extract_traits(kv.second)
                }});
            linked_pops.back().push_back(&it->second);
722
723
724
725
        }
        return name;
    }

726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
    template <typename PRINTABLE>
    static
        void prepend(std::ostream& os, const std::string& pfx, PRINTABLE&& p)
        {
            std::stringstream ss;
            ss << p;
            while (!ss.eof()) {
                std::string line;
                std::getline(ss, line);
                os << pfx << line << std::endl;
            }
        }

    friend
        std::ostream& operator << (std::ostream& os, const pop_data_type& pop_data)
        {
            os << "POPULATION " << pop_data.name << std::endl
               << "| QTL generation: " << pop_data.qtl_generation_name << std::endl
               << "| Marker observations:" << std::endl;
            for (const auto& kv: pop_data.marker_observation_filenames) {
                os << "| - " << kv.first << ": " << kv.second << std::endl;
            }
            os << "| Generation matrices:" << std::endl;
            for (const auto& kv: pop_data.generations) {
                prepend(os, "|   ", (*kv.second));
            }
752
753
754
755
            os << "| Families" << std::endl;
            for (const auto& kv: pop_data.families) {
                os << "| * " << kv.first << ": " << kv.second << std::endl;
            }
756
            os << "| Computed locus vectors:" << std::endl;
757
758
759
760
761
            /*prepend(os, "| ", pop_data.LV);*/
            for (const auto& kv: pop_data.LV.data) {
                os << "| Chromosome " << kv.first << std::endl;
                for (const auto& gen_lv: kv.second) {
                    os << "|   Generation " << gen_lv.first << std::endl;
762
                    const auto& family = pop_data.families.find(gen_lv.first)->second;
763
                    for (size_t i = 0; i < gen_lv.second.size(); ++i) {
764
                        os << "|     #" << i << "  " << pop_data.get_geno_matrix(gen_lv.first, i)->name << std::endl;
765
766
767
768
                        prepend(os, "|     ", gen_lv.second[i]);
                    }
                }
            }
769
770
771
772
773
774
775
776
777
778

            return os;
        }
};




#endif