output.h 23 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
#ifndef _SPELL_BAYES_OUTPUT_H_
#define _SPELL_BAYES_OUTPUT_H_

#include <map>
#include <vector>
#include <string>
#include <iostream>
#include <fstream>
#include <cstring>

#include "eigen.h"
#include "error.h"
13
/*#include "generation_rs_fwd.h"*/
14
#include "input/read_trait.h"
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

/** FOURCC **/

inline
bool check_fourcc(std::ifstream& ifs, const char* fourcc)
{
    char buf[4] = {0, 0, 0, 0};
    ifs.read(buf, 4);
    return strncmp(fourcc, buf, 4);
}

inline
void write_fourcc(std::ofstream& ofs, const char* fourcc)
{
    ofs.write(fourcc, 4);
}

/** SIZE_T **/

inline
void write_size(std::ofstream& ofs, size_t sz)
{
    ofs.write((const char*) &sz, sizeof sz);
}

inline
size_t read_size(std::ifstream& ifs)
{
    size_t ret;
    ifs.read((char*) &ret, sizeof ret);
    return ret;
}

/** STRING **/

inline
std::string read_str(std::ifstream& ifs)
{
    size_t sz = read_size(ifs);
    std::vector<char> tmp(sz);
    ifs.read(&tmp[0], sz);
    return {tmp.begin(), tmp.end()};
}

inline
void write_str(std::ofstream& ofs, const std::string& s)
{
    write_size(ofs, s.size());
    ofs.write(s.c_str(), s.size());
}

/** DOUBLE **/

inline
void write_double(std::ofstream& ofs, double sz)
{
    ofs.write((const char*) &sz, sizeof sz);
}

inline
double read_double(std::ifstream& ifs)
{
    double ret;
    ifs.read((char*) &ret, sizeof ret);
    return ret;
}

/** INT **/

inline
void write_int(std::ofstream& ofs, int sz)
{
    ofs.write((const char*) &sz, sizeof sz);
}

inline
int read_int(std::ifstream& ifs)
{
    int ret;
    ifs.read((char*) &ret, sizeof ret);
    return ret;
}

98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
/** CHAR **/

inline
void write_char(std::ofstream& ofs, char sz)
{
    ofs.write((const char*) &sz, sizeof sz);
}

inline
char read_char(std::ifstream& ifs)
{
    char ret;
    ifs.read(&ret, sizeof ret);
    return ret;
}

#if 0
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
/** FAST_POLYNOM **/

inline
void write_fast_polynom(std::ofstream& ofs, const fast_polynom& fp)
{
    impl::f_polynom f = fp;
    write_int(ofs, fp.value);
    write_int(ofs, f.r_exp);
    write_int(ofs, f.s_exp);
    write_size(ofs, f.P.size());
    for (double c: f.P) {
        write_double(ofs, c);
    }
}

inline
fast_polynom read_fast_polynom(std::ifstream& ifs, int& original_key)
{
    original_key = read_int(ifs);
    impl::f_polynom ret = fast_polynom::zero;
    ret.r_exp = read_int(ifs);
    ret.s_exp = read_int(ifs);
    size_t sz = read_size(ifs);
    ret.P.resize(sz);
    for (size_t i = 0; i < sz; ++i) {
        ret.P[i] = read_double(ifs);
    }
    return ret;
}

/** ALGREBRAIC GENOTYPE **/

inline void write_algebraic_genotype(std::ofstream& ofs, const algebraic_genotype& ag)
{
    ofs.write((const char*) &ag.genotype, sizeof ag.genotype);
    ofs.write((const char*) &ag.type, sizeof ag.type);
    write_int(ofs, ag.poly.value);
}

inline algebraic_genotype read_algebraic_genotype(std::ifstream& ifs, const std::map<int, fast_polynom>& pt)
{
    algebraic_genotype ag;
    ifs.read((char*) &ag.genotype, sizeof ag.genotype);
    ifs.read((char*) &ag.type, sizeof ag.type);
    ag.poly = pt.find(read_int(ifs))->second;
    return ag;
}

/** GENOMATRIX **/

inline void write_genomatrix(std::ofstream& ofs, const GenoMatrix& mat)
{
    write_fourcc(ofs, "SGEM");
    /*std::map<decltype(fast_polynom::value), impl::f_polynom>*/
    std::set<fast_polynom> poly_table;
    for (int j = 0; j < mat.cols(); ++j) {
        for (int i = 0; i < mat.rows(); ++i) {
            poly_table.insert(mat(i, j).poly);
        }
    }
    write_size(ofs, poly_table.size());
    for (const auto& fp: poly_table) {
        write_fast_polynom(ofs, fp);
    }
    write_int(ofs, mat.cols());
    write_int(ofs, mat.rows());
    /*MSG_DEBUG("[write_genomatrix] cols=" << mat.cols() << " rows=" << mat.rows());*/
    for (int j = 0; j < mat.cols(); ++j) {
        for (int i = 0; i < mat.rows(); ++i) {
            /*write_int(ofs, mat(i, j).value);*/
            write_algebraic_genotype(ofs, mat(i, j));
        }
    }
}

inline
void read_genomatrix(std::ifstream& ifs, GenoMatrix& mat)
{
    if (check_fourcc(ifs, "SGEM")) {
        MSG_ERROR("File is not valid or has been corrupted", "");
        return;
    }
    std::map<int, fast_polynom> poly_map;

    size_t table_size = read_size(ifs);
    int key;

    for (size_t i = 0; i < table_size; ++i) {
        auto f = read_fast_polynom(ifs, key);
        poly_map[key] = f;
    }

    int cols = read_int(ifs);
    int rows = read_int(ifs);
    /*MSG_DEBUG("[read_genomatrix] cols=" << cols << " rows=" << rows);*/
    mat.resize(rows, cols);
    for (int j = 0; j < mat.cols(); ++j) {
        for (int i = 0; i < mat.rows(); ++i) {
            mat(i, j) = read_algebraic_genotype(ifs, poly_map);
        }
    }
}

/** GENERATION_RS **/

220
inline void write_geno_matrix(std::ofstream& ofs, const geno_matrix* gen)
221
222
223
224
225
226
227
228
229
230
231
{
    write_fourcc(ofs, "SGRS");
    write_str(ofs, gen->name);
    write_size(ofs, gen->P.size());
    for (const auto& p: gen->P) {
        write_double(ofs, p.weight);
        write_genomatrix(ofs, p.G.data);
    }
}

inline
232
geno_matrix* read_geno_matrix(std::ifstream& ifs)
233
234
235
236
237
238
239
{
    if (check_fourcc(ifs, "SGRS")) {
        MSG_ERROR("File is not valid or has been corrupted", "");
    }
    /*MSG_DEBUG("pouet 1"); MSG_QUEUE_FLUSH();*/
    std::string name = read_str(ifs);
    /*MSG_DEBUG("pouet 2"); MSG_QUEUE_FLUSH();*/
240
    geno_matrix* ret = geno_matrix::blank(name);
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
    /*MSG_DEBUG("pouet 3"); MSG_QUEUE_FLUSH();*/
    size_t n_p = read_size(ifs);
    /*MSG_DEBUG("Have " << n_p << " processes"); MSG_QUEUE_FLUSH();*/
    ret->P.resize(n_p);
    for (size_t i = 0; i < n_p; ++i) {
        ret->P[i].weight = read_double(ifs);
        GenoMatrix tmp;
        read_genomatrix(ifs, tmp);
        ret->P[i].G = convert(tmp);
        /*MSG_DEBUG("Read process");*/
        /*MSG_DEBUG(ret->P[i]);*/
    }
    ret->precompute();
    return ret;
}
256
257
#endif

258
259
260
261
262
263
264
265
266

/** MATRIX<SCALAR, R, C> **/

template <typename MATRIX_TYPE>
struct resize_matrix_impl;

template <> struct resize_matrix_impl<VectorXd> { void operator () (VectorXd& v, size_t rows, size_t) { v.resize(rows); } };
template <> struct resize_matrix_impl<MatrixXd> { void operator () (MatrixXd& m, size_t rows, size_t cols) { m.resize(rows, cols); } };

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
template <typename SCALAR, int ROW, int COL, int C, int D, int E>
struct resize_matrix_impl<Eigen::Matrix<SCALAR, ROW, COL, C, D, E>> {
    void operator () (Eigen::Matrix<SCALAR, ROW, COL, C, D, E>& m, size_t r, size_t c) { m.resize(r, c); }
};

template <typename SCALAR, int ROW, int C, int D, int E>
struct resize_matrix_impl<Eigen::Matrix<SCALAR, ROW, 1, C, D, E>> {
    void operator () (Eigen::Matrix<SCALAR, ROW, 1, C, D, E>& v, size_t r, size_t) { v.resize(r); }
};

template <typename SCALAR, int COL, int C, int D, int E>
struct resize_matrix_impl<Eigen::Matrix<SCALAR, 1, COL, C, D, E>> {
    void operator () (Eigen::Matrix<SCALAR, 1, COL, C, D, E>& v, size_t, size_t c) { v.resize(c); }
};

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
template <typename MATRIX_TYPE>
void resize_matrix(MATRIX_TYPE& m, size_t r, size_t c) { resize_matrix_impl<MATRIX_TYPE>()(m, r, c); }

template <typename SCALAR, int ROW, int COL, int C, int D, int E>
void read_matrix(std::ifstream& ifs, Eigen::Matrix<SCALAR, ROW, COL, C, D, E>& mat)
{
    size_t scalar_sz = read_size(ifs);
    if (scalar_sz != sizeof(SCALAR)) {
        MSG_ERROR("WRONG SIZE OF SCALAR, CAN'T READ FILE", "Make sure spell-marker and spell-qtl are always executed on machines with same word size.");
    }
    size_t n_row = read_size(ifs);
    size_t n_col = read_size(ifs);
    if (ROW != Eigen::Dynamic && ((int) n_row) != ROW) {
        MSG_ERROR("WRONG ROW COUNT. FILE IS NOT A LOCUS VECTOR FILE OR IS CORRUPTED", "You may want to run spell-marker again");
    }
    if (COL != Eigen::Dynamic && ((int) n_col) != COL) {
        MSG_ERROR("WRONG COLUMN COUNT. FILE IS NOT A LOCUS VECTOR FILE OR IS CORRUPTED", "You may want to run spell-marker again");
    }
    resize_matrix(mat, n_row, n_col);
    ifs.read((char*) mat.data(), n_row * n_col * sizeof(SCALAR));
}

template <typename SCALAR, int ROW, int COL, int C, int D, int E>
void write_matrix(std::ofstream& ofs, const Eigen::Matrix<SCALAR, ROW, COL, C, D, E>& mat)
{
    write_size(ofs, sizeof(SCALAR));
    write_size(ofs, mat.rows());
    write_size(ofs, mat.cols());
    ofs.write((const char*) mat.data(), mat.size() * sizeof(SCALAR));
}


314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
template <typename V, typename READ_ELEM_FUNC>
void read_vector(std::ifstream& ifs, std::vector<V>& vec, READ_ELEM_FUNC read_elem)
{
    size_t sz = read_size(ifs);
    vec.clear();
    vec.reserve(sz);
    for (size_t i = 0; i < sz; ++i) {
        vec.emplace_back(read_elem(ifs));
    }
}


template <typename V, typename WRITE_ELEM_FUNC>
void write_vector(std::ofstream& ofs, const std::vector<V>& vec, WRITE_ELEM_FUNC write_elem)
{
    write_size(ofs, vec.size());
    for (const auto& e: vec) {
        write_elem(ofs, e);
    }
}


/** LABEL_TYPE **/

label_type read_label(std::ifstream& ifs)
{
    char f, s;
    ifs >> f >> s;
    return {f, s};
}

void write_label(std::ofstream& ofs, const label_type& l)
{
    ofs << l.first() << l.second();
}


/** GENO_MATRIX **/

inline void write_geno_matrix(std::ofstream& ofs, const geno_matrix& mat)
{
    write_fourcc(ofs, "SGEM");
    write_str(ofs, mat.name);
    /* skip variant, it's deprecated. Or should be. */
    write_vector(ofs, mat.labels, write_label);
    write_matrix(ofs, mat.inf_mat);
    write_matrix(ofs, mat.p);
    write_matrix(ofs, mat.p_inv);
    write_matrix(ofs, mat.diag);
    write_matrix(ofs, mat.stat_dist);
    write_matrix(ofs, mat.collect);
    write_matrix(ofs, mat.dispatch);
    /* also skip symmetries for now. */
}

inline
void read_geno_matrix(std::ifstream& ifs, geno_matrix& mat)
{
    if (check_fourcc(ifs, "SGEM")) {
        MSG_ERROR("File is not valid or has been corrupted", "");
        return;
    }
    mat.name = read_str(ifs);
    /* skip variant. */
    read_vector(ifs, mat.labels, read_label);
    read_matrix(ifs, mat.inf_mat);
    read_matrix(ifs, mat.p);
    read_matrix(ifs, mat.p_inv);
    read_matrix(ifs, mat.diag);
    read_matrix(ifs, mat.stat_dist);
    read_matrix(ifs, mat.collect);
    read_matrix(ifs, mat.dispatch);
    /* also skip symmetries for now. */
}


inline void write_geno_matrix(std::ofstream& ofs, const geno_matrix* ptr)
{
    write_geno_matrix(ofs, *ptr);
}

geno_matrix* read_geno_matrix(std::ifstream& ifs)
{
    geno_matrix* ret = new geno_matrix();
    read_geno_matrix(ifs, *ret);
    return ret;
}


403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
/** **/


struct LV_database {
    std::map<std::string, std::map<std::string, std::vector<MatrixXd>>> data;

    LV_database() : data() {}
    
    MatrixXd& operator () (const std::string& chr, const std::string& gen, size_t ind)
    {
        return data[chr][gen][ind];
    }

    const MatrixXd& operator () (const std::string& chr, const std::string& gen, size_t ind) const
    {
        return data.find(chr)->second.find(gen)->second[ind];
    }

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
    std::map<std::string, std::vector<MatrixXd>>
        extract(const std::string& gen, const std::vector<size_t> ind_vec) const
        {
            std::map<std::string, std::vector<MatrixXd>> ret;
            for (const auto& chr_gen_lv_vec: data) {
                const std::string& chr = chr_gen_lv_vec.first;
                const auto& lv_vec = chr_gen_lv_vec.second.find(gen)->second;
                auto& ret_lv_vec = ret[chr];
                ret_lv_vec.reserve(ind_vec.size());
                for (size_t i: ind_vec) {
                    ret_lv_vec.push_back(lv_vec[i]);
                }
            }
            return ret;
        }

437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
    static
        bool lv_check_fourcc(std::ifstream& ifs, const char* fourcc)
        {
            if (check_fourcc(ifs, fourcc)) {
                MSG_ERROR("FILE IS NOT A LOCUS VECTOR FILE OR IS CORRUPTED", "You may want to run spell-marker again.");
                return true;
            }
            return false;
        }

    static
        LV_database load_from(const std::string& filename)
        {
            std::ifstream ifs(filename);
            return load_from(ifs);
        }

    static
        LV_database load_from(std::ifstream& ifs)
        {
            LV_database LV;

            if (lv_check_fourcc(ifs, "SMLV")) { return {}; }
            size_t n_chrom = read_size(ifs);
            size_t n_gen = read_size(ifs);
            for (size_t c = 0; c < n_chrom; ++c) {
                if (lv_check_fourcc(ifs, "SCHR")) { return {}; }
                std::string chr_name = read_str(ifs);
                for (size_t g = 0; g < n_gen; ++g) {
                    if (lv_check_fourcc(ifs, "SGEN")) { return {}; }
                    std::string gen_name = read_str(ifs);
                    size_t n_ind = read_size(ifs);
                    LV.data[chr_name][gen_name].resize(n_ind);
                    for (size_t i = 0; i < n_ind; ++i) {
                        if (lv_check_fourcc(ifs, "SLV_")) { return {}; }
                        read_matrix(ifs, LV.data[chr_name][gen_name][i]);
                    }
                }
            }
            return LV;
        }

    void save_to(const std::string& filename)
    {
        std::ofstream ofs(filename);
        save_to(ofs);
    }

    void save_to(std::ofstream& ofs)
    {
        write_fourcc(ofs, "SMLV");
        write_size(ofs, data.size());
        write_size(ofs, data.begin()->second.size());
        for (const auto& chr_gen_vec_lv: data) {
            write_fourcc(ofs, "SCHR");
            write_str(ofs, chr_gen_vec_lv.first);
            for (const auto& gen_vec_lv: chr_gen_vec_lv.second) {
                write_fourcc(ofs, "SGEN");
                write_str(ofs, gen_vec_lv.first);
                write_size(ofs, gen_vec_lv.second.size());
                for (const auto& lv: gen_vec_lv.second) {
                    write_fourcc(ofs, "SLV_");
                    write_matrix(ofs, lv);
                }
            }
        }
    }

    friend
        std::ostream& operator << (std::ostream& os, const LV_database& LV)
        {
            for (const auto& chr_gen_vec_lv: LV.data) {
                MSG_DEBUG("CHROMOSOME " << chr_gen_vec_lv.first);
                for (const auto& gen_vec_lv: chr_gen_vec_lv.second) {
                    MSG_DEBUG("* generation " << gen_vec_lv.first);
                    size_t i = 0;
                    for (const auto& lv: gen_vec_lv.second) {
                        MSG_DEBUG("  #" << i);
                        ++i;
                        MSG_DEBUG(lv);
                    }
                }
            }
            return os;
        }
};


/** **/


528
529
530
struct qtl_pop_type {
    std::string name;
    std::vector<size_t> indices;
531
    const geno_matrix* gen;
532
533
534
    std::map<std::string, std::vector<MatrixXd>> LV;
    std::string observed_traits_filename;
    std::vector<trait> observed_traits;
535
    /*qtl_pop_type(const std::string& n, const std::vector<size_t>& ind, const geno_matrix* g,*/
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
                 /*std::vector<MatrixXd>&& lv, const std::string& otf, std::vector<trait>&& ot)*/
        /*: name(n), indices(ind), gen(g), LV(std::move(lv)), observed_traits_filename(ofs), observed_traits(std::move(ot))*/
    /*{}*/

    size_t size() const
    {
        return observed_traits.front().values.size();
    }

    const MatrixXd& get_LV(const std::string& chr, size_t i) const { return LV.find(chr)->second[i]; }
};


/** **/


552
553
554
555
556
557
struct pop_data_type {
    std::string name;
    std::map<std::string, std::string> marker_observation_filenames;
    std::string genetic_map_filename;
    std::string pedigree_filename;
    std::string qtl_generation_name;
558
    std::map<std::string, geno_matrix*> generations;
559
    LV_database LV;
560
    std::map<std::string, std::vector<int>> families;
561
    std::map<size_t, const geno_matrix*> gen_by_id;
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595

    std::string save()
    {
        static const char* forbidden = ":?*/\\";
        std::stringstream filename;
        for (char c: name) {
            if (strchr(forbidden, c)) {
                filename << '_';
            } else {
                filename << c;
            }
        }
        filename << ".popdata";
        save_to(filename.str());
        return filename.str();
    }

    void save_to(const std::string& filename)
    {
        std::ofstream ofs(filename);
        write_fourcc(ofs, "SPOP");
        write_str(ofs, name);
        write_size(ofs, marker_observation_filenames.size());
        for (const auto& kv: marker_observation_filenames) {
            write_str(ofs, kv.first);
            write_str(ofs, kv.second);
        }
        write_str(ofs, genetic_map_filename);
        write_str(ofs, pedigree_filename);
        write_str(ofs, qtl_generation_name);
        write_size(ofs, generations.size());
        for (const auto& kv: generations) {
            write_fourcc(ofs, "SGTE");
            write_str(ofs, kv.first);
596
            write_geno_matrix(ofs, kv.second);
597
598
        }
        LV.save_to(ofs);
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
        write_fourcc(ofs, "SFAM");
        write_size(ofs, families.size());
        for (const auto& kv: families) {
            write_str(ofs, kv.first);
            write_size(ofs, kv.second.size());
            for (int i: kv.second) {
                write_int(ofs, i);
            }
        }
        write_fourcc(ofs, "SGBI");
        write_size(ofs, gen_by_id.size());
        for (const auto& kv: gen_by_id) {
            write_size(ofs, kv.first);
            write_str(ofs, kv.second->name);
        }
614
615
    }

616
617
618
619
620
621
622
623
624
625
    static
        bool pop_check_fourcc(std::ifstream& ifs, const char* fourcc)
        {
            if (check_fourcc(ifs, fourcc)) {
                MSG_ERROR("Could not read FOURCC \"" << fourcc << "\". This is not a valid population data file.", "");
                return true;
            }
            return false;
        }

626
627
628
    static
        pop_data_type load_from(const std::string& filename)
        {
629
#define CHECK_4CC(_fourcc_) if (pop_check_fourcc(ifs, _fourcc_)) { return ret; }
630
631
            std::ifstream ifs(filename);
            pop_data_type ret;
632
            CHECK_4CC("SPOP");
633
634
635
636
637
638
639
640
641
642
643
644
            ret.name = read_str(ifs);
            size_t n_mof = read_size(ifs);
            for (size_t i = 0; i < n_mof; ++i) {
                std::string k = read_str(ifs);
                std::string v = read_str(ifs);
                ret.marker_observation_filenames[k] = v;
            }
            ret.genetic_map_filename = read_str(ifs);
            ret.pedigree_filename = read_str(ifs);
            ret.qtl_generation_name = read_str(ifs);
            size_t n_gen = read_size(ifs);
            for (size_t i = 0; i < n_gen; ++i) {
645
                CHECK_4CC("SGTE");
646
                std::string k = read_str(ifs);
647
                ret.generations[k] = read_geno_matrix(ifs);
648
649
            }
            ret.LV = LV_database::load_from(ifs);
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
            CHECK_4CC("SFAM");
            size_t n_fam = read_size(ifs);
            for (size_t f = 0; f < n_fam; ++f) {
                std::string k = read_str(ifs);
                size_t n_ind = read_size(ifs);
                auto& fam = ret.families[k];
                for (size_t i = 0; i < n_ind; ++i) {
                    ret.families[k].push_back(read_int(ifs));
                }
            }
            CHECK_4CC("SGBI");
            size_t n_gbi = read_size(ifs);
            for (size_t g = 0; g < n_gbi; ++g) {
                size_t k = read_size(ifs);
                std::string gen = read_str(ifs);
                ret.gen_by_id[k] = ret.generations[gen];
            }
667
668
669
            return ret;
        }

670
671
    size_t size() const { return families.find(qtl_generation_name)->second.size(); }

672
    const geno_matrix* get_geno_matrix(const std::string& family, size_t ind) const
673
674
675
676
    {
        return gen_by_id.find(families.find(family)->second[ind])->second;
    }

677
678
    std::map<const geno_matrix*, std::vector<size_t>>
        all_qtl_geno_matrix() const
679
        {
680
            std::map<const geno_matrix*, std::vector<size_t>> ret;
681
682
683
684
685
686
687
688
            size_t i = 0;
            for (size_t ind: families.find(qtl_generation_name)->second) {
                ret[gen_by_id.find(ind)->second].push_back(i);
                ++i;
            }
            return ret;
        }

Damien Leroux's avatar
Damien Leroux committed
689
    std::string extract_subpops(std::multimap<std::string, qtl_pop_type>& pops, const std::string& traits_filename, const std::vector<trait>& traits, std::vector<std::vector<const qtl_pop_type*>>& linked_pops)
690
691
692
693
694
695
696
697
698
699
700
701
702
    {
        auto extract_traits
            = [&] (const std::vector<size_t>& ind_vec)
            {
                std::vector<trait> ret;
                ret.resize(traits.size());
                for (size_t ti = 0; ti < traits.size(); ++ti) {
                    ret[ti].name = traits[ti].name;
                    ret[ti].values.reserve(ind_vec.size());
                    for (size_t i: ind_vec) { ret[ti].values.push_back(traits[ti].values[i]); }
                }
                return ret;
            };
703
        auto aqg = all_qtl_geno_matrix();
Damien Leroux's avatar
Damien Leroux committed
704
705
        linked_pops.emplace_back();
        linked_pops.back().reserve(aqg.size());
706
        for (const auto& kv: aqg) {
Damien Leroux's avatar
Damien Leroux committed
707
708
709
710
711
712
713
714
715
716
            auto it = 
                pops.insert({name, {
                    name,
                    kv.second,
                    kv.first,
                    LV.extract(qtl_generation_name, kv.second),
                    traits_filename,
                    extract_traits(kv.second)
                }});
            linked_pops.back().push_back(&it->second);
717
718
719
720
        }
        return name;
    }

721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
    template <typename PRINTABLE>
    static
        void prepend(std::ostream& os, const std::string& pfx, PRINTABLE&& p)
        {
            std::stringstream ss;
            ss << p;
            while (!ss.eof()) {
                std::string line;
                std::getline(ss, line);
                os << pfx << line << std::endl;
            }
        }

    friend
        std::ostream& operator << (std::ostream& os, const pop_data_type& pop_data)
        {
            os << "POPULATION " << pop_data.name << std::endl
               << "| QTL generation: " << pop_data.qtl_generation_name << std::endl
               << "| Marker observations:" << std::endl;
            for (const auto& kv: pop_data.marker_observation_filenames) {
                os << "| - " << kv.first << ": " << kv.second << std::endl;
            }
            os << "| Generation matrices:" << std::endl;
            for (const auto& kv: pop_data.generations) {
                prepend(os, "|   ", (*kv.second));
            }
747
748
749
750
            os << "| Families" << std::endl;
            for (const auto& kv: pop_data.families) {
                os << "| * " << kv.first << ": " << kv.second << std::endl;
            }
751
            os << "| Computed locus vectors:" << std::endl;
752
753
754
755
756
            /*prepend(os, "| ", pop_data.LV);*/
            for (const auto& kv: pop_data.LV.data) {
                os << "| Chromosome " << kv.first << std::endl;
                for (const auto& gen_lv: kv.second) {
                    os << "|   Generation " << gen_lv.first << std::endl;
757
                    const auto& family = pop_data.families.find(gen_lv.first)->second;
758
                    for (size_t i = 0; i < gen_lv.second.size(); ++i) {
759
                        os << "|     #" << i << "  " << pop_data.get_geno_matrix(gen_lv.first, i)->name << std::endl;
760
761
762
763
                        prepend(os, "|     ", gen_lv.second[i]);
                    }
                }
            }
764
765
766
767
768
769
770
771
772
773

            return os;
        }
};




#endif