pedigree.h 54 KB
Newer Older
1
2
3
4
#ifndef _SPELL_BAYES_CSV_H_
#define _SPELL_BAYES_CSV_H_

#include <iostream>
5
#include "file.h"
6
7
8
9
10
#include <string>
#include <sstream>
#include <stdexcept>
#include <vector>
#include <utility>
11
#include <unordered_set>
12
13


Damien Leroux's avatar
Damien Leroux committed
14
15
/*#include "permutation.h"*/
/*#include "symmetry.h"*/
16
17
#include "geno_matrix.h"
#include "linear_combination.h"
Damien Leroux's avatar
Damien Leroux committed
18
#include "pedigree_tree.h"
19
#include "bayes/output.h"
20
21


22
23
24
25
26
27
28
29
30
31
32
struct bn_label_type {
    char first;
    char second;
    char first_allele;
    char second_allele;
    bn_label_type() : first(0), second(0), first_allele(0), second_allele(0) {}
    bn_label_type(int) : first(0), second(0), first_allele(0), second_allele(0) {}
    bn_label_type(char f, char s, char fa, char sa)
        : first(f), second(s), first_allele(fa), second_allele(sa)
    {}

33
34
35
    int compact() const { return *(int*) this; }
    int& compact() { return *(int*) this; }

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
    friend std::ostream& operator << (std::ostream& os, const bn_label_type& bl)
    {
        if (bl.second != GAMETE_EMPTY) {
            return os << bl.first << ((int) bl.first_allele) << bl.second << ((int) bl.second_allele);
        } else {
            return os << bl.first << ((int) bl.first_allele);
        }
    }

    bool operator < (const bn_label_type& other) const
    {
        /*return first < other.first || (first == other.first*/
            /*&& (second < other.second || (second == other.second*/
            /*&& (first_allele < other.first_allele || (first_allele == other.first_allele*/
            /*&& second_allele < other.second_allele)))));*/
        return (*(int*)this) < (*(int*) &other);
    }

    bool operator == (const bn_label_type& other) const
    {
        return (*(int*)this) == (*(int*) &other);
    }
58
59
60
61
62

    bool operator != (const bn_label_type& other) const
    {
        return (*(int*)this) != (*(int*) &other);
    }
63
64
65
};

typedef combination_type<size_t, bn_label_type> genotype_comb_type;
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135


template <typename Arg>
int read_field(std::stringstream& s, char sep, Arg& arg)
{
    std::string field;
    std::getline(s, field, sep);
    /*MSG_DEBUG("CSV FIELD |" << field << "|");*/
    std::stringstream ss(field);
    ss >> arg;
    return 0;
}


#define do_with_arg_pack(_expr) do { using _ = int[]; (void)_{0, ((_expr), void(), 0)...}; } while(0)

template <typename... Args>
void read_csv_line(std::istream& is, char sep, Args&... args)
{
    std::string line;
    std::getline(is, line);
    /*MSG_DEBUG("CSV LINE |" << line << "|");*/
    std::stringstream ss(line);
    do_with_arg_pack(read_field(ss, sep, args));
}





struct pedigree_item {
    std::string gen_name;
    int id;
    int p1;
    int p2;

    pedigree_item(const char* gn, int i, int a, int b)
        : gen_name(gn), id(i), p1(a), p2(b)
    {}

    pedigree_item(std::istream& is, char field_sep=';')
        : gen_name()
    {
        id = p1 = p2 = 0;
        read_csv_line(is, field_sep, gen_name, id, p1, p2);
        if (id == p1 && id == p2 && id == 0) {
            return;
        }
        if (id <= p1 || id <= p2) {
            throw std::runtime_error("Bad ID! ID must be greater than p1 AND p2");
            /*MSG_DEBUG("BAD ID!! " << id << " must be greater than " << p1 << " AND " << p2);*/
        }
    }

    bool is_ancestor() const { return p1 == 0 && p2 == 0; }
    bool is_self() const { return p1 > 0 && p1 == p2; }
    bool is_cross() const { return p1 > 0 && p2 > 0 && p1 != p2; }
    bool is_dh() const { return p1 != p2 && p1 >= 0 && p2 >= 0 && (p1 * p2) == 0; }
    bool is_bullshit() const { return !(is_ancestor() || is_self() || is_cross() || is_dh()); }
};


std::vector<pedigree_item>
read_csv(const std::string& pedigree_file, char field_sep=';');



typedef std::map<size_t, size_t> ancestor_list_type;


136
inline
137
138
139
140
141
142
143
144
145
146
147
148
ancestor_list_type reentrants(const ancestor_list_type& a)
{
    ancestor_list_type ret;
    for (const auto& kv: a) {
        if (kv.second > 1) {
            ret.emplace(kv);
        }
    }
    return ret;
}


149
inline
150
151
152
153
154
155
156
157
158
159
ancestor_list_type operator + (const ancestor_list_type& a1, const ancestor_list_type& a2)
{
    ancestor_list_type ret(a1);
    for (const auto& kv: a2) {
        ret[kv.first] += kv.second;
    }
    return ret;
}


160
inline
161
162
163
164
165
166
167
168
169
170
171
172
173
ancestor_list_type operator / (const ancestor_list_type& a, const ancestor_list_type& restr)
{
    ancestor_list_type ret;
    for (const auto& kv: a) {
        auto i = restr.find(kv.first);
        if (i != restr.end()) {
            ret.emplace(kv.first, std::min(kv.second, i->second));
        }
    }
    return ret;
}


174
inline
175
176
177
178
179
180
181
182
183
184
185
186
ancestor_list_type operator % (const ancestor_list_type& a, const ancestor_list_type& restr)
{
    ancestor_list_type ret;
    for (const auto& kv: a) {
        if (restr.find(kv.first) != restr.end()) {
            ret.emplace(kv);
        }
    }
    return ret;
}


187
inline
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
ancestor_list_type operator - (const ancestor_list_type& a, const ancestor_list_type& restr)
{
    ancestor_list_type ret;
    for (const auto& kv: a) {
        auto it = restr.find(kv.first);
        if (it == restr.end()) {
            ret.emplace(kv);
        } else if (kv.second > it->second) {
            ret.emplace(kv.first, kv.second - it->second);
        }
    }
    return ret;
}


203
inline
204
205
206
207
208
209
210
211
212
213
ancestor_list_type operator * (const ancestor_list_type& a, size_t weight)
{
    ancestor_list_type ret;
    for (const auto& kv: a) {
        ret.emplace(kv.first, kv.second * weight);
    }
    return ret;
}


214
inline
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
std::ostream& operator << (std::ostream& os, const ancestor_list_type& a)
{
    auto i = a.begin();
    auto j = a.end();
    if (i != j) {
        os << i->first << ':' << i->second;
        for (++i; i != j; ++i) {
            os << ' ' << i->first << ':' << i->second;
        }
    } else {
        os << "empty";
    }
    return os;
}


231
#if 0
232
233
234
235
236
237
238
239
240
241
242
243
label_type operator * (label_type a, label_type b)
{
    label_type ret;
    if (a.second == GAMETE_EMPTY) {
        ret = {a.first, b.first};
    } else {
        if (b.second == GAMETE_EMPTY) {
            ret = {SELECT(a, b.first), GAMETE_EMPTY};
        } else {
            ret = {SELECT(a, b.first), SELECT(a, b.second)};
        }
    }
244
245
246
    /*MSG_DEBUG("" << a << " * " << b << " = " << ret);*/
    return ret;
}
247
#endif
248
249
250
251


#define SELECT_A(__p, __b) ((__b) == GAMETE_R ? (__p).second_allele : (__p).first_allele)

252
inline
253
254
255
256
257
258
259
260
261
262
263
264
265
bn_label_type operator * (bn_label_type a, bn_label_type b)
{
    bn_label_type ret;
    if (a.second == GAMETE_EMPTY) {
        ret = {a.first, b.first, a.first_allele, b.first_allele};
    } else {
        if (b.second == GAMETE_EMPTY) {
            ret = {SELECT(a, b.first), GAMETE_EMPTY, SELECT_A(a, b.first), 0};
        } else {
            ret = {SELECT(a, b.first), SELECT(a, b.second), SELECT_A(a, b.first), SELECT_A(a, b.second)};
        }
    }
    /*MSG_DEBUG("" << a << " * " << b << " = " << ret);*/
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
    return ret;
}


template <typename F> struct make_one;
template <> struct make_one<MatrixXd> {
    static MatrixXd& _(bool der) {
        static MatrixXd one = MatrixXd::Ones(1, 1);
        static MatrixXd zero = MatrixXd::Zero(1, 1);
        return der ? zero : one;
    }
};
template <> struct make_one<VectorXd> {
    static VectorXd& _(bool der) {
        static VectorXd one = VectorXd::Ones(1);
        static VectorXd zero = VectorXd::Zero(1);
        return der ? zero : one;
    }
};


287
288
289
290
291
292
293
294
295
296
template <typename PARENT_TYPE, typename STATE_TYPE>
struct rw_comb : public rw_any<rw_comb<PARENT_TYPE, STATE_TYPE>> {
    typedef combination_type<PARENT_TYPE, STATE_TYPE> comb_type;

    virtual ~rw_comb() {}

    using rw_any<rw_comb<PARENT_TYPE, STATE_TYPE>>::fourcc;
    using rw_any<rw_comb<PARENT_TYPE, STATE_TYPE>>::ref;
    using rw_any<rw_comb<PARENT_TYPE, STATE_TYPE>>::operator ();

297
298
    void operator () (ifile& ifs, bn_label_type& l) { l.compact() = read_int(ifs); }
    void operator () (ofile& ofs, const bn_label_type& l) { write_int(ofs, l.compact()); }
299

300
301
    void operator () (ifile& fs, typename comb_type::key_type& key) { ref() (fs, key.parent); ref() (fs, key.state); }
    void operator () (ofile& fs, const typename comb_type::key_type& key) { ref() (fs, key.parent); ref() (fs, key.state); }
302

303
304
    void operator () (ifile& fs, typename comb_type::key_list& keys) { ref() (fs, keys.keys); }
    void operator () (ofile& fs, const typename comb_type::key_list& keys) { ref() (fs, keys.keys); }
305

306
307
    void operator () (ifile& fs, typename comb_type::element_type& elem) { ref() (fs, elem.keys); ref() (fs, elem.coef); }
    void operator () (ofile& fs, const typename comb_type::element_type& elem) { ref() (fs, elem.keys); ref() (fs, elem.coef); }
308

309
    void operator () (ifile& fs, comb_type& comb)
310
311
312
313
314
    {
        if (fourcc(fs, "COMB")) { return; }
        ref() (fs, comb.m_combination);
    }

315
    void operator () (ofile& fs, const comb_type& comb)
316
317
318
319
320
321
322
323
324
325
326
327
328
329
    {
        if (fourcc(fs, "COMB")) { return; }
        ref() (fs, comb.m_combination);
    }
};


struct rw_tree : public rw_any<rw_tree> {
    virtual ~rw_tree() {}

    using rw_any<rw_tree>::fourcc;
    using rw_any<rw_tree>::ref;
    using rw_any<rw_tree>::operator ();

330
331
    void operator () (ifile& fs, pedigree_tree_type::node_type& node) { ref() (fs, node.p1); ref() (fs, node.p2); }
    void operator () (ofile& fs, const pedigree_tree_type::node_type& node) { ref() (fs, node.p1); ref() (fs, node.p2); }
332

333
334
335
336
337
338
339
340
341
342
343
344
    template <typename STREAM_TYPE, typename TREE_TYPE>
        void tree_io_impl(STREAM_TYPE& fs, TREE_TYPE&& tree)
        {
            ref() (fs, tree.m_leaves);
            ref() (fs, tree.m_roots);
            ref() (fs, tree.m_nodes);
            ref() (fs, tree.m_must_recompute);
            ref() (fs, tree.m_node_number_to_ind_number);
            ref() (fs, tree.m_ind_number_to_node_number);
            ref() (fs, tree.m_original_ordering);
        }

345
    void operator () (ifile& fs, pedigree_tree_type& tree)
346
    {
347
        tree_io_impl(fs, tree);
348
349
    }

350
    void operator () (ofile& fs, const pedigree_tree_type& tree)
351
    {
352
        tree_io_impl(fs, tree);
353
    }
354
355
356
};


357
358
359
360
361
362
363
/* TODO extraire l'arbre du pedigree
 * TODO opérations sur l'arbre :
 * TODO - insérer un nouveau noeud étant donné {P1, P2} (Pi étant soit néant soit un noeud existant)
 * TODO - extraire sous-arbre étant donné {RACINE, {FEUILLES}}
 * TODO - comparer deux arbres
 * TODO - pour deux arbres comparables, déterminer la rotation du second pour matcher le premier
 */
364
365
366
367

/*
 * pedigree_type: implements all facilities to compute proper geno_matrices for any pedigree, including reentrant individuals.
 */
368
struct pedigree_type {
369
370
371
    /*
     * pedigree tree implementation
     */
Damien Leroux's avatar
Damien Leroux committed
372
    pedigree_tree_type tree;
373
374
375
376
377

    /*
     * pedigree tree metadata
     */
    typedef size_t geno_matrix_index_type;
Damien Leroux's avatar
Damien Leroux committed
378
    typedef int individual_index_type;
379
380
381
382
    std::vector<std::shared_ptr<geno_matrix>> generations;
    std::vector<geno_matrix_index_type> node_generations;
    std::map<individual_index_type, char> ancestor_letters;
    std::map<geno_matrix_index_type, std::string> generation_names;
383
    /*std::vector<VectorLC> LC;*/
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398

    /*
     * geno_matrix cache to avoid recomputing identical generations
     */
    std::map<geno_matrix_index_type, geno_matrix_index_type> cache_gamete;
    std::map<std::pair<geno_matrix_index_type, geno_matrix_index_type>, geno_matrix_index_type> cache_geno;

    /*
     * geno_matrix database
     */

    std::map<std::string, std::set<geno_matrix_index_type>> geno_matrix_by_generation_name;
    std::map<std::string, std::vector<individual_index_type>> individuals_by_generation_name;
    std::map<individual_index_type, const std::string*> generation_name_by_individual;

399
400
401
402
403
404
405
406
407
408
409
    /*
     * overlump control
     */

    size_t max_states;

    /*
     * BN metadata
     */
    size_t n_alleles;

410
411
412
413
414
415
416
417
418
419
420
421
422
    /*
     * Metadata for XML output and recreating command line
     */
    std::string filename;

    /*
     * Actual output: LC and factors for bayesian network
     */
    std::vector<std::vector<gencomb_type>> LC;
    std::vector<std::vector<std::map<bn_label_type, genotype_comb_type>>> factor_messages;
    std::vector<std::vector<size_t>> individuals_in_factors;
    /* i-th element means the i-th variable receives a message through this factor from variables in genotype_comb_type:keys */

423
424
425
426
    /*
     * default ctor
     */
    pedigree_type()
Damien Leroux's avatar
Damien Leroux committed
427
428
429
        : tree(), node_generations(), ancestor_letters(), generation_names(),
          cache_gamete(), cache_geno(),
          max_states(NONE),
430
431
432
433
          n_alleles(1),
          filename("<none>"),
          LC(),
          factor_messages()
434
435
436
437
438
439
440
441
442
    {
        __init();
    }

    void __init()
    {
        generations.emplace_back();
    }

Damien Leroux's avatar
Damien Leroux committed
443
#if 0
444
    /*
445
     * prealloc ctor
446
447
448
     */
    pedigree_type(size_t n_ind)
    {
449
        n_alleles = 1;
Damien Leroux's avatar
Damien Leroux committed
450
        max_states = NONE;
451
452
453
454
455
456
        nodes.reserve(3 * n_ind);
        /*ind_generations.reserve(n_ind);*/
        ind_number_to_node_number.reserve(n_ind);
        __init();
    }

Damien Leroux's avatar
Damien Leroux committed
457
458
    size_t last_node_index() const { return tree.size() - 1; }
#endif
459

460
    individual_index_type spawn_gamete(const std::string&, int parent_node)
461
    {
Damien Leroux's avatar
Damien Leroux committed
462
        int n = tree.add_node(parent_node);
463
        node_generations.emplace_back(node_generations[parent_node]);
Damien Leroux's avatar
Damien Leroux committed
464
465
466
467
468
        /*MSG_DEBUG_INDENT_EXPR("[compute " << gamete_name << " gamete] ");*/
        /*compute_generation(n);*/
        /*compute_LC(n);*/
        /*MSG_DEBUG_DEDENT;*/
        return n;
469
470
    }

471
    individual_index_type spawn(const std::string& generation_name, std::initializer_list<individual_index_type> parents)
472
    {
Damien Leroux's avatar
Damien Leroux committed
473
        individual_index_type ind = tree.next_ind_idx();
474
475
476
477
478
        switch (parents.size()) {
            case 0: /* ancestor */
                {
                    MSG_DEBUG_INDENT_EXPR("[compute gen #" << ind << "] ");
                    MSG_DEBUG("ANCESTOR");
Damien Leroux's avatar
Damien Leroux committed
479
480
                    int n = tree.add_node();
                    MSG_DEBUG("node=" << n << " ind=" << ind);
481
                    compute_generation(generation_name, n);
482
                    compute_LC(n);
483
484
485
486
487
488
489
                    MSG_DEBUG_DEDENT;
                }
                break;
            case 1: /* doubling */
                {
                    MSG_DEBUG_INDENT_EXPR("[compute gen #" << ind << "] ");
                    MSG_DEBUG("DOUBLING");
Damien Leroux's avatar
Damien Leroux committed
490
491
492
493
                    individual_index_type p1 = *parents.begin();
                    int g1 = spawn_gamete("M", tree.ind2node(p1));
                    int n = tree.add_node(g1, g1);
                    MSG_DEBUG("node=" << n << " ind=" << ind);
494
495
                    compute_generation(generation_name, n);
                    compute_LC(n);
Damien Leroux's avatar
Damien Leroux committed
496
                    /*compute_data_for_bn(n);*/
497
498
499
500
501
502
503
504
505
                    MSG_DEBUG_DEDENT;
                }
                break;
            case 2: /* crossing & selfing */
                {
                    MSG_DEBUG_INDENT_EXPR("[compute gen #" << ind << "] ");
                    MSG_DEBUG("CROSSING/SELFING");
                    auto i = parents.begin();
                    individual_index_type p1 = *i++;
Damien Leroux's avatar
Damien Leroux committed
506
                    int n1 = tree.ind2node(p1);
507
                    individual_index_type p2 = *i;
Damien Leroux's avatar
Damien Leroux committed
508
                    int n2 = tree.ind2node(p2);
509
                    /*MSG_DEBUG("p1=" << p1 << " p2=" << p2 << " n1=" << n1 << " n2=" << n2);*/
Damien Leroux's avatar
Damien Leroux committed
510
511
512
513
                    int g1 = spawn_gamete("M", n1);
                    int g2 = spawn_gamete("F", n2);
                    int n = tree.add_node(g1, g2);
                    MSG_DEBUG("node=" << n << " ind=" << ind);
514
515
                    compute_generation(generation_name, n);
                    compute_LC(n);
Damien Leroux's avatar
Damien Leroux committed
516
                    /*compute_data_for_bn(n);*/
517
518
519
520
521
522
523
524
                    MSG_DEBUG_DEDENT;
                }
                break;
            default:;
        };
        return ind;
    }

525
526
527
528
    /*individual_index_type crossing(std::string& generation_name, individual_index_type p1, individual_index_type p2) { return spawn(generation_name, {p1, p2}); }*/
    /*individual_index_type selfing(std::string& generation_name, individual_index_type p1) { return spawn(generation_name, {p1, p1}); }*/
    /*individual_index_type dh(std::string& generation_name, individual_index_type p1) { return spawn(generation_name, {p1}); }*/
    /*individual_index_type ancestor(std::string& generation_name) { return spawn(generation_name, {}); }*/
529
530
531
532
533
534
535
536
537
538

    individual_index_type fill_db(const std::string& name, individual_index_type ind)
    {
        geno_matrix_by_generation_name[name].insert(get_gen_index(ind)).first;
        individuals_by_generation_name[name].push_back(ind);
        auto it = individuals_by_generation_name.find(name);
        generation_name_by_individual[ind] = &it->first;
        return ind;
    }

539
540
541
542
    individual_index_type crossing(const std::string& name, individual_index_type p1, individual_index_type p2) { return fill_db(name, spawn(name, {p1, p2})); }
    individual_index_type selfing(const std::string& name, individual_index_type p1) { return fill_db(name, spawn(name, {p1, p1})); }
    individual_index_type dh(const std::string& name, individual_index_type p1) { return fill_db(name, spawn(name, {p1})); }
    individual_index_type ancestor(const std::string& name) { return fill_db(name, spawn(name, {})); }
543

Damien Leroux's avatar
Damien Leroux committed
544
    void propagate_symmetries(int n, geno_matrix& gen)
545
    {
546
        MSG_DEBUG_INDENT_EXPR("[propagate symmetries #" << n << "] ");
Damien Leroux's avatar
Damien Leroux committed
547
548
549
550
551
552
553
        std::vector<int> in, out;
        auto expr = tree.extract_expression(n, in, out);
        std::vector<pedigree_tree_type> input_trees;
        input_trees.reserve(in.size());
        for (int t: in) {
            input_trees.emplace_back(tree.extract_subtree(t));
        }
554
555
556
557
558
559
560
561
562
563
564
        /*auto recompute = tree.get_deep_recompute_vec(n);*/
        /*MSG_DEBUG("RECOMPUTE: " << recompute);*/
        auto get_lumper
            = [&, this] (int node) -> MatrixXb
            {
                /*if (tree[node].is_gamete() || recompute[node]) {*/
                    /*MSG_DEBUG("NIL lumper for node #" << node << " because" << (recompute[node] && tree[node].is_gamete() ? " recompute flag is set and it is a gamete" : tree[node].is_gamete() ? " it is a gamete" : " recompute flag is set"));*/
                    /*return {};*/
                /*}*/
                return get_node_gen(node)->collect.cast<bool>();
            };
Damien Leroux's avatar
Damien Leroux committed
565
        symmetry_propagator sp(expr);
566
        MSG_DEBUG_INDENT_EXPR("[SYMMETRIES] ");
Damien Leroux's avatar
Damien Leroux committed
567
568
569
570
571
        gen.symmetries = sp.compute_propagated_symmetries(
                [&] (int i) -> const pedigree_tree_type& { MSG_DEBUG("request subtree for input #" << i); return input_trees[i]; },
                [&] (int node) -> const symmetry_group_type& { MSG_DEBUG("request symmetries for node #" << node); return get_node_gen(node)->symmetries; },
                [&] (int node) -> const symmetry_group_type& { MSG_DEBUG("request latent symmetries for node #" << node); return get_node_gen(node)->latent_symmetries; },
                gen.labels, gen.inf_mat,
572
                get_lumper
Damien Leroux's avatar
Damien Leroux committed
573
                );
574
575
        MSG_DEBUG_DEDENT;
        MSG_DEBUG_INDENT_EXPR("[LATENT SYMMETRIES] ");
Damien Leroux's avatar
Damien Leroux committed
576
577
578
579
580
        auto temp = sp.compute_propagated_latent_symmetries(
                [&] (int i) -> const pedigree_tree_type& { MSG_DEBUG("request subtree for input #" << i); return input_trees[i]; },
                [&] (int node) -> const symmetry_group_type& { MSG_DEBUG("request symmetries for node #" << node); return get_node_gen(node)->symmetries; },
                [&] (int node) -> const symmetry_group_type& { MSG_DEBUG("request latent symmetries for node #" << node); return get_node_gen(node)->latent_symmetries; },
                gen.labels, gen.inf_mat,
581
                get_lumper
Damien Leroux's avatar
Damien Leroux committed
582
                );
583
        MSG_DEBUG_DEDENT;
Damien Leroux's avatar
Damien Leroux committed
584
585
        MSG_DEBUG(temp);
        gen.latent_symmetries = temp - gen.symmetries;
586
        MSG_DEBUG_INDENT_EXPR("[AFTER SYMMETRY PROPAGATION] ");
Damien Leroux's avatar
Damien Leroux committed
587
        MSG_DEBUG(gen);
588
        MSG_DEBUG_DEDENT;
589
        MSG_DEBUG_DEDENT;
590
591
    }

592
    void compute_generation(const std::string& generation_name, int n)
593
    {
Damien Leroux's avatar
Damien Leroux committed
594
        MSG_DEBUG("Computing generation for node " << tree.make_node_label(n));
595
        /*MSG_DEBUG(render_tree());*/
596

Damien Leroux's avatar
Damien Leroux committed
597
598
        int np1 = tree.get_p1(n);
        int np2 = tree.get_p2(n);
599
600
601
        node_generations.emplace_back(generations.size());
        geno_matrix new_gen;
        geno_matrix_index_type* cached_gen = NULL;
Damien Leroux's avatar
Damien Leroux committed
602
        if (np1 == NONE && np2 == NONE) {
603
604
605
            /* ancestor */
            char l = 'a' + ancestor_letters.size();
            ancestor_letters[n] = l;
606
            new_gen = ancestor_matrix(generation_name, l);
Damien Leroux's avatar
Damien Leroux committed
607
        } else if (np2 == NONE) {
608
609
            /* gamete */
            auto gp = node_generations[np1];
Damien Leroux's avatar
Damien Leroux committed
610
            auto& cache = cache_gamete;
611
612
613
614
615
616
            cached_gen = &cache[gp];
            if (*cached_gen) {
                MSG_DEBUG("GENERATION HAS ALREADY BEEN COMPUTED");
                node_generations[n] = *cached_gen;
                return;
            }
Damien Leroux's avatar
Damien Leroux committed
617
            new_gen = kronecker(*generations[gp], gamete);
618
            new_gen.name = generation_name;
619
620
            /*MSG_DEBUG("TMP GAMETE GEN");*/
            /*MSG_DEBUG(new_gen);*/
621
        } else {
622
623
            /*auto ngp1 = node_generations[np1];*/
            /*auto ngp2 = node_generations[np2];*/
Damien Leroux's avatar
Damien Leroux committed
624
625
626
            /*auto gp1 = generations[ngp1];*/
            /*auto gp2 = generations[ngp2];*/
            MSG_DEBUG("Child of " << tree.node2ind(tree.get_p1(np1)) << " and " << tree.node2ind(tree.get_p1(np2)));
627

628
629
630
631
            /* use node's grandparents generations, not parents (no gamete generation) */
            size_t g1 = node_generations[tree.get_p1(np1)];
            size_t g2 = node_generations[tree.get_p1(np2)];
            cached_gen = &cache_geno[{g1, g2}];
632
633
634
635
636
637
            if (*cached_gen) {
                MSG_DEBUG("GENERATION HAS ALREADY BEEN COMPUTED");
                node_generations[n] = *cached_gen;
                return;
            }

Damien Leroux's avatar
Damien Leroux committed
638
639
            const auto& recompute = tree.get_recompute_vec(n);

640
641
642
            std::vector<bool> visited_clear(recompute.size(), false);
            std::vector<bool> visited;

643
644
            new_gen.name = generation_name;

645
646
647
648
649
650
            visited = visited_clear;
            MSG_DEBUG("COMPUTING INF_MAT");
            new_gen.inf_mat = eval(n, &geno_matrix::inf_mat, &pedigree_type::kron_d, recompute, visited);
            MSG_DEBUG(MATRIX_SIZE(new_gen.inf_mat));
            visited = visited_clear;
            MSG_DEBUG("COMPUTING DIAG");
651
            new_gen.diag = eval(n, &geno_matrix::diag, &pedigree_type::kron_d_diag, recompute, visited);
652
653
654
655
656
657
658
659
660
661
662
            visited = visited_clear;
            MSG_DEBUG("COMPUTING STAT_DIST");
            new_gen.stat_dist = eval(n, &geno_matrix::stat_dist, &pedigree_type::kron, recompute, visited);
            visited = visited_clear;
            MSG_DEBUG("COMPUTING P");
            new_gen.p = eval(n, &geno_matrix::p, &pedigree_type::kron, recompute, visited);
            visited = visited_clear;
            MSG_DEBUG("COMPUTING P_INV");
            new_gen.p_inv = eval(n, &geno_matrix::p_inv, &pedigree_type::kron_d, recompute, visited);
            /*new_gen.labels = eval_labels(n, recompute, visited_clear);*/
            new_gen.labels = eval_vector(n, recompute, &pedigree_type::get_labels, reentrant_label);
Damien Leroux's avatar
Damien Leroux committed
663
            new_gen.variant = (tree[n].is_genotype()
664
                               ? Geno
Damien Leroux's avatar
Damien Leroux committed
665
                               : Gamete);
666
667
668
669
670
671
672
673
            new_gen.dispatch = new_gen.collect = MatrixXd::Identity(new_gen.diag.size(), new_gen.diag.size());
            MSG_DEBUG(MATRIX_SIZE(new_gen.inf_mat));
            MSG_DEBUG(MATRIX_SIZE(new_gen.p));
            MSG_DEBUG(MATRIX_SIZE(new_gen.p_inv));
            MSG_DEBUG(MATRIX_SIZE(new_gen.diag));
            MSG_DEBUG("new_gen.labels.size()=" << new_gen.labels.size());
            MSG_QUEUE_FLUSH();

Damien Leroux's avatar
Damien Leroux committed
674
            /*if (!(ind_number_to_node_number.size() == 9 && tree.size() == 23)) {*/
675
                /*MSG_DEBUG("PROPAGATING SYMMETRIES");*/
676
                /*propagate_symmetries(new_gen, recompute, n);*/
677
678
                /*study_expression_symmetries(new_gen);*/
                /*complete_symmetries(new_gen);*/
679
                /*MSG_DEBUG("COMPUTING LATENT SYMMETRY");*/
680
            /*}*/
681
682
683
        }
        node_generations[n] = generations.size();
        generations.emplace_back(new geno_matrix());
684
685
        /*MSG_DEBUG("BEFORE LUMPING");*/
        /*MSG_DEBUG(new_gen);*/
686
        *generations.back() = lump(new_gen, max_states);
687
688
689
        /*if (tree[n].is_crossing()) {*/
            /*propagate_symmetries(n, *generations.back());*/
        /*} else if (tree[n].is_ancestor()) {*/
Damien Leroux's avatar
Damien Leroux committed
690
            generations.back()->symmetries = symmetry_group_type(generations.back()->labels);
691
        /*}*/
692
693
694
695
696
        /**node_generations[n] = lump(new_gen);*/
        if (cached_gen) {
            *cached_gen = node_generations[n];
        }
        MSG_DEBUG("DONE COMPUTING GENERATION FOR NODE #" << n);
697
        MSG_DEBUG_INDENT_EXPR("[RESULT " << tree.make_node_label(n) << " gen#" << node_generations[n] << "] ");
698
699
        MSG_DEBUG((*generations.back()));
        MSG_DEBUG_DEDENT;
700
        /*MSG_DEBUG((*generations[node_generations[n]]));*/
701
702
703
        MSG_DEBUG("=========================================================================");
    }

704
    std::map<genotype_comb_type::key_list, double> GLC_norm_factors(const std::vector<genotype_comb_type>& expanded)
705
    {
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
        std::map<genotype_comb_type::key_list, double> ret;
        for (const auto& e: expanded) {
            const auto& elem = e.m_combination.front();  /* all LC are singletons in the expanded vector */
            for (const auto& k: elem.keys) {
                auto sub_k = elem.keys - k;
                ret[sub_k] += elem.coef;
            }
        }
        return ret;
    }

    void compute_data_for_bn(int n)
    {
        compute_LC(n);

        factor_messages.resize(n + 1);
        for (auto& dest_f: compute_factors(n, true)) {
            factor_messages[dest_f.first].emplace_back(std::move(dest_f.second));
724
        }
725
726
727
728
729
730
731
732
733
734
735
736
737
        for (auto& dest_f: compute_factors(n, false)) {
            factor_messages[dest_f.first].emplace_back(std::move(dest_f.second));
        }
        individuals_in_factors.resize(n + 1);
        std::vector<size_t>& iif = individuals_in_factors.back();
        std::vector<int> in;
        std::vector<int> out;
        auto expr = tree.extract_expression(n, in, out);
        iif.reserve(expr.m_nodes.size());
        for (size_t i = 0; i < expr.m_nodes.size(); ++i) {
            if (expr.m_nodes[i].is_genotype()) {
                iif.push_back(expr.original_node_number(i));
            }
738
        }
739
740
        MSG_DEBUG("INDIVIDUALS IN FACTOR: " << iif);
    }
741

742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
    void
        compute_LC(int n)
        {
            int p1 = tree.get_p1(n);
            std::vector<gencomb_type> lc;
            const geno_matrix& m = *generations[node_generations[n]];
            if (p1 == NONE) {
                lc.emplace_back(1.);
            } else {
                lc = eval_vector(tree.size() - 1, tree.get_recompute_vec(n), &pedigree_type::get_LC, reentrant_LC);
            }
            VectorLC tmp(lc.size()), lumped;
            for (size_t i = 0; i < lc.size(); ++i) {
                tmp(i) = lc[i];
            }
            lumped = m.collect.cast<gencomb_type>() * tmp;
            LC.resize(n + 1);
            LC.back().assign(lumped.data(), lumped.data() + lumped.size());
            MSG_DEBUG("Computed new LC:");
            MSG_DEBUG("" << LC.back());
762
763
        }

764
765
766
767
768
    std::map<size_t, std::map<bn_label_type, genotype_comb_type>>
        compute_factors(int n, bool up)
        {
            std::vector<genotype_comb_type> glc;
            std::vector<bn_label_type> bn_labels;
769

770
771
772
            if (tree.get_p1(n) == NONE) {
                return {};
            }
773

774
775
776
777
778
779
780
781
782
783
            if (up) {
                std::vector<bool> recompute(n + 1, false);
                recompute[n] = true;
                recompute[tree.get_p1(n)] = true;
                recompute[tree.get_p2(n)] = true;
                glc = eval_vector(tree.size() - 1, recompute, &pedigree_type::get_GLC, reentrant_GLC);
                bn_labels = eval_vector(tree.size() - 1, recompute, &pedigree_type::get_bn_labels, reentrant_bn_label);
            } else {
                glc = eval_vector(tree.size() - 1, tree.get_recompute_vec(n), &pedigree_type::get_GLC, reentrant_GLC);
                bn_labels = eval_vector(tree.size() - 1, tree.get_recompute_vec(n), &pedigree_type::get_bn_labels, reentrant_bn_label);
784
785
            }

786
787
788
789
790
791
792
            MSG_DEBUG("glc.size = " << glc.size());
            MSG_DEBUG("bn_labels.size = " << bn_labels.size());

            std::map<bn_label_type, genotype_comb_type> glc_map;
            for (size_t i = 0; i < bn_labels.size(); ++i) {
                glc_map[bn_labels[i]] += glc[i];
            }
793

794
795
796
797
798
799
800
801
802
803
            MSG_DEBUG("Corresponding GLC:");
            std::vector<genotype_comb_type> expanded_glc;
            for (const auto& kv: glc_map) {
                MSG_DEBUG("" << kv.first << " = " << kv.second);
                for (const auto& elem: kv.second.m_combination) {
                    expanded_glc.emplace_back();
                    expanded_glc.back().m_combination.emplace_back(elem);
                    auto& keys = expanded_glc.back().m_combination.back().keys.keys;
                    keys.emplace_back(tree.size() - 1, kv.first);
                    std::sort(keys.begin(), keys.end());
804
                }
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
            }

            MSG_DEBUG("Sparse GLC coefs:");
            for (const auto& g: expanded_glc) {
                MSG_DEBUG("" << g);
            }

            auto glc_norm_factors = GLC_norm_factors(expanded_glc);
            for (const auto& kn: glc_norm_factors) {
                MSG_DEBUG('|' << kn.first << "| = " << kn.second);
            }

            std::map<size_t, std::map<bn_label_type, genotype_comb_type>> messages;
            size_t n_nodes = expanded_glc.front().m_combination.front().keys.keys.size();
            size_t first, last;
            if (up) {
                first = 0;
                last = n_nodes - 2;
            } else {
                first = 0;
                last = n_nodes - 1;
            }
            for (const auto& lc: expanded_glc) {
                const auto& elems = lc.m_combination.front();
                const auto& keys = elems.keys.keys;
                for (size_t ni = first; ni <= last; ++ni) {
                    genotype_comb_type tmp;
                    tmp.m_combination.emplace_back(elems.coef);
                    auto& msg_keys = tmp.m_combination.back().keys.keys;
                    size_t i;
                    for (i = 0; i < ni; ++i) {
                        msg_keys.emplace_back(keys[i]);
                    }
                    for (++i; i < n_nodes; ++i) {
                        msg_keys.emplace_back(keys[i]);
                    }
                    tmp.m_combination.front().coef /= glc_norm_factors[tmp.m_combination.back().keys];
                    messages[keys[ni].parent][keys[ni].state] += tmp;
843
844
845
                }
            }

846
847
848
849
850
            for (const auto& kv1: messages) {
                MSG_DEBUG("MESSAGE TOWARDS #" << kv1.first);
                for (const auto& kv2: kv1.second) {
                    MSG_DEBUG("" << kv2.first << " = " << kv2.second);
                }
851
            }
852
853

            return messages;
854
855
856
857
858
859
860
861
862
863
864
865
866
867
        }


    static MatrixXd kron(const MatrixXd& m1, const MatrixXd& m2)
    {
        return kroneckerProduct(m1, m2);
    }

    static MatrixXd kron_d(const MatrixXd& m1, const MatrixXd& m2)
    {
        return kroneckerProduct(m1, MatrixXd::Identity(m2.rows(), m2.cols()))
             + kroneckerProduct(MatrixXd::Identity(m1.rows(), m1.cols()), m2);
    }

868
869
870
871
872
873
    static MatrixXd kron_d_diag(const MatrixXd& m1, const MatrixXd& m2)
    {
        return kroneckerProduct(m1, MatrixXd::Ones(m2.rows(), m2.cols()))
             + kroneckerProduct(MatrixXd::Ones(m1.rows(), m1.cols()), m2);
    }

874
875
    char ancestor_letter(size_t a) const
    {
Damien Leroux's avatar
Damien Leroux committed
876
        auto i = ancestor_letters.find(tree.ind2node(a));
877
878
879
        return i == ancestor_letters.end() ? 0 : i->second;
    }

880
    geno_matrix_index_type get_gen_index(size_t ind) const
881
    {
Damien Leroux's avatar
Damien Leroux committed
882
        return node_generations[tree.ind2node(ind)];
883
884
885
886
887
888
889
890
    }

    const std::shared_ptr<geno_matrix> get_gen(size_t ind) const
    {
        return generations[get_gen_index(ind)];
    }

    const geno_matrix&
Damien Leroux's avatar
Damien Leroux committed
891
        get_geno_matrix_by_individual(size_t ind) const { return *generations[node_generations[tree.ind2node(ind)]]; }
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
    const std::set<geno_matrix_index_type>&
        get_geno_matrices_by_name(const std::string& name) const { return geno_matrix_by_generation_name.find(name)->second; }
    const std::string&
        get_generation_name_by_individual(size_t ind) const { return *generation_name_by_individual.find(ind)->second; }

    const std::shared_ptr<geno_matrix> get_node_gen(size_t node) const
    {
        return generations[node_generations[node]];
    }

    typedef MatrixXd (* KronFunc) (const MatrixXd&, const MatrixXd&);

    template <typename FIELD_TYPE>
    FIELD_TYPE eval(size_t node, FIELD_TYPE geno_matrix::* field, KronFunc func, const std::vector<bool>& recompute, std::vector<bool>& visited) const
    {
907
        scoped_indent _;
908
        /*MSG_DEBUG("eval node " << node);*/
909
        if (visited[node]) {
910
            /*MSG_DEBUG("already visited => 1");*/
911
            return make_one<FIELD_TYPE>::_(func == kron_d || func == kron_d_diag);
912
913
        }
        visited[node] = true;
Damien Leroux's avatar
Damien Leroux committed
914
        if (recompute[node] || tree[node].is_gamete()) {
915
            FIELD_TYPE ret, m1, m2;
Damien Leroux's avatar
Damien Leroux committed
916
917
918
919
920
921
922
923
            if (tree[node].is_genotype()) {
                m1 = eval(tree.get_p1(node), field, func, recompute, visited);
                m2 = eval(tree.get_p2(node), field, func, recompute, visited);
                ret = func(m1, m2);
            } else {
                m1 = eval(tree.get_p1(node), field, func, recompute, visited);
                ret = func(m1, gamete.*field);
            }
924
925
            return ret;
        } else {
926
927
            /*MSG_DEBUG("using actual matrix");*/
            /*MSG_DEBUG((*generations[node_generations[node]]).*field);*/
928
929
930
931
932
933
934
935
936
937
938
939
            return (*generations[node_generations[node]]).*field;
        }
        return {};
    }

    template <typename VALUE_TYPE>
    struct vector_iterator {
        typedef std::vector<VALUE_TYPE> vector_type;
        vector_type data;
        typename vector_type::const_iterator begin, end, cur;
        vector_iterator() : data(), begin(data.begin()), end(data.end()), cur(data.begin()) {}
        vector_iterator(const vector_type& l) : data(l), begin(data.begin()), end(data.end()), cur(data.begin()) {}
940
        void reset() { cur = begin = data.begin(); end = data.end(); }
941
942
943
944
945
        void start() { cur = begin; }
        bool next() { if (at_end()) return true; return ++cur == end; }
        bool at_end() const { return cur == end; }
        size_t size() const { return end - begin; }
        const VALUE_TYPE& operator * () const { return *cur; }
946
        const VALUE_TYPE* operator -> () const { return &*cur; }
947
948
949
950
951
952
953
954
955
956
957
    };

    typedef vector_iterator<label_type> label_iterator;
    typedef vector_iterator<symmetry_table_type> symmetry_iterator;

    template <typename VALUE_TYPE>
        VALUE_TYPE eval_one(size_t node, const std::vector<bool>& recompute, const std::vector<vector_iterator<VALUE_TYPE>>& iterators,
                            const std::vector<size_t>& node_to_iterator, std::vector<bool>& visited,
                            VALUE_TYPE (&eval_reent)(size_t, const VALUE_TYPE&),
                            std::vector<VALUE_TYPE>& reent) const
        {
958
            /*scoped_indent _(MESSAGE("[eval #" << node << "] "));*/
959
960
961
            if (visited[node]) {
                auto ret = eval_reent(node, reent[node]);
                /*ret = eval_reent(node, iterators[node_to_iterator[node]]);*/
962
                /*MSG_DEBUG("reentrant; " << ret);*/
963
964
965
                return ret;
            } else {
                visited[node] = true;
Damien Leroux's avatar
Damien Leroux committed
966
967
968
969
970
971
972
973
974
975
976
977
978
                if (recompute[node] || tree[node].is_gamete()) {
                    if (tree[node].is_genotype()) {
                        /*MSG_DEBUG("eval p1");*/
                        auto p1 = eval_one(tree.get_p1(node), recompute, iterators, node_to_iterator, visited, eval_reent, reent);
                        /*MSG_DEBUG("p1 = " << p1);*/
                        /*MSG_DEBUG("eval p2");*/
                        auto p2 = eval_one(tree.get_p2(node), recompute, iterators, node_to_iterator, visited, eval_reent, reent);
                        /*MSG_DEBUG("p2 = " << p2);*/
                        reent[node] = p1 * p2;
                    } else {
                        reent[node] = eval_one(tree.get_p1(node), recompute, iterators, node_to_iterator, visited, eval_reent, reent)
                                    * *iterators[node_to_iterator[node]];
                    }
979
980
981
982
                } else {
                    reent[node] = *iterators[node_to_iterator[node]];
                }
            }
983
984
            /*MSG_DEBUG("ret = " << reent[node]);*/
            /*MSG_QUEUE_FLUSH();*/
985
986
987
988
989
990
991
992
993
994
995
996
            return reent[node];
        }

    struct skip_eval_exception {};

    template <typename VALUE_TYPE>
        VALUE_TYPE eval_one(size_t node, const std::vector<bool>& recompute, const std::vector<vector_iterator<VALUE_TYPE>>& iterators,
                            const std::vector<size_t>& node_to_iterator, std::vector<bool>& visited,
                            VALUE_TYPE (&eval_reent)(size_t, const VALUE_TYPE&),
                            std::vector<VALUE_TYPE>& reent,
                            bool (&skip_predicate)(const VALUE_TYPE&)) const
        {
997
            /*scoped_indent _(MESSAGE("[eval #" << node << "] "));*/
998
999
1000
            if (visited[node]) {
                auto ret = eval_reent(node, reent[node]);
                /*ret = eval_reent(node, iterators[node_to_iterator[node]]);*/
For faster browsing, not all history is shown. View entire blame